RESUMEN
BACKGROUND: Forced displacement and war trauma cause high rates of post-traumatic stress, anxiety disorders and depression in refugee populations. We investigated the impact of forced displacement on mental health status, gender, presentation of type 2 diabetes (T2D) and associated inflammatory markers among Syrian refugees in Lebanon. METHODS: Mental health status was assessed using the Harvard Trauma Questionnaire (HTQ) and the Hopkins Symptom Checklist-25 (HSCL-25). Additional metabolic and inflammatory markers were analyzed. RESULTS: Although symptomatic stress scores were observed in both men and women, women consistently displayed higher symptomatic anxiety/depression scores with the HSCL-25 (2.13 ± 0.58 versus 1.95 ± 0.63). With the HTQ, however, only women aged 35-55 years displayed symptomatic post-traumatic stress disorder (PTSD) scores (2.18 ± 0.43). Furthermore, a significantly higher prevalence of obesity, prediabetes and undiagnosed T2D were observed in women participants (23.43, 14.91 and 15.18%, respectively). Significantly high levels of the inflammatory marker serum amyloid A were observed in women (11.90 ± 11.27 versus 9.28 ± 6.93, P = 0.036). CONCLUSIONS: Symptomatic PTSD, anxiety/depression coupled with higher levels of inflammatory marker and T2D were found in refugee women aged between 35 and 55 years favoring the strong need for psychosocial therapeutic interventions in moderating stress-related immune dysfunction and development of diabetes in this subset of female Syrian refugees.
Asunto(s)
Diabetes Mellitus Tipo 2 , Refugiados , Trastornos por Estrés Postraumático , Masculino , Humanos , Femenino , Adulto , Persona de Mediana Edad , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Siria/epidemiología , Trastornos por Estrés Postraumático/epidemiología , Depresión/epidemiología , Depresión/etiología , Inflamación/complicacionesRESUMEN
Titanium dental implants are one of the modalities to replace missing teeth. The release of titanium particles from the implant's surface may modulate the immune cells, resulting in implant failure. However, little is known about the immune microenvironment that plays a role in peri-implant inflammation as a consequence of titanium particles. In this study, the peri-implant gingival tissues were collected from patients with failed implants, successful implants and no implants, and then a whole transcriptome analysis was performed. The gene set enrichment analysis confirmed that macrophage M1/M2 polarization and lymphocyte proliferation were differentially expressed between the study groups. The functional clustering and pathway analysis of the differentially expressed genes between the failed implants and successful implants versus no implants revealed that the immune response pathways were the most common in both comparisons, implying the critical role of infiltrating immune cells in the peri-implant tissues. The H&E and IHC staining confirmed the presence of titanium particles and immune cells in the tissue samples, with an increase in the infiltration of lymphocytes and macrophages in the failed implant samples. The in vitro validation showed a significant increase in the level of IL-1ß, IL-8 and IL-18 expression by macrophages. Our findings showed evidence that titanium particles modulate lymphocyte and macrophage polarization in peri-implant gingival tissues, which can help in the understanding of the imbalance in osteoblast-osteoclast activity and failure of dental implant osseointegration.
Asunto(s)
Implantes Dentales , Titanio , Humanos , Titanio/efectos adversos , Titanio/análisis , Encía , Linfocitos/química , Macrófagos/química , Inflamación , Implantes Dentales/efectos adversosRESUMEN
Melanin is a dark color pigment biosynthesized naturally in most living organisms. Fungal melanin is a major putative virulence factor of Mucorales fungi that allows intracellular persistence by inducing phagosome maturation arrest. Recently, it has been shown that the black pigments of Rhizopus delemar is of eumelanin type, that requires the involvement of tyrosinase (a copper-dependent enzyme) in its biosynthesis. Herein, we have developed a series of compounds (UOSC-1-14) to selectively target Rhizopus melanin and explored this mechanism therapeutically. The compounds were designed based on the scaffold of the natural product, cuminaldehyde, identified from plant sources and has been shown to develop non-selective inhibition of melanin production. While all synthesized compounds showed significant inhibition of Rhizopus melanin production and limited toxicity to mammalian cells, only four compounds (UOSC-1, 2, 13, and 14) were selected as promising candidates based on their selective inhibition to fungal melanin. The activity of compound UOSC-2 was comparable to the positive control kojic acid. The selected candidates showed significant inhibition of Rhizopus melanin but not human melanin by targeting the fungal tyrosinase, and with an IC50 that are 9 times lower than the reference standard, kojic acid. Furthermore, the produced white spores were phagocytized easily and cleared faster from the lungs of infected immunocompetent mice and from the human macrophages when compared with wild-type spores. Collectively, the results suggested that the newly designed derivatives, particularly UOSC-2 can serve as promising candidate to overcome persistence mechanisms of fungal melanin production and hence make them accessible to host defenses.
Asunto(s)
Productos Biológicos/metabolismo , Melaninas/biosíntesis , Rhizopus/química , Activación Enzimática/efectos de los fármacos , Humanos , Melaninas/metabolismo , Estructura Molecular , Monofenol Monooxigenasa/metabolismo , Fagocitosis/fisiología , Pironas/farmacología , Relación Estructura-ActividadRESUMEN
BACKGROUND: The oral cavity represents a main entrance of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Angiotensin-converting enzyme 2 (ACE-2), neuropilin-1 (NRP-1), and transmembrane serine protease 2 (TMPRSS2) are essential for the entry of SARS-CoV-2 to the host cells. Both ACE-2 and NRP-1 receptors and TMPRSS2 have been identified in the oral cavity. However, there is limited knowledge about the impact of periapical lesions and their metabolites on the expression of these critical genes. This study aims to measure the impact of periapical lesions and their unique fatty acids (FAs) metabolites on the expression of the aforementioned genes, in addition to interleukin 6 (IL-6) gene and hence SARS-CoV-2 infection loads can be estimated. METHODS: Gene expression of ACE-2, NRP-1, TMPRSS2, and IL-6 was performed in periapical lesions in comparison to healthy oral cavity. Since FAs are important immunomodulators required for the lipid synthesis essential for receptors synthesis and viral replication, comparative FAs profiling was determined in oral lesions and healthy pulp tissues using gas chromatography-mass spectrometry (GC-MS). The effect of major identified and unique FAs was tested on mammalian cells known to express ACE-2, NRP-1, and TMPRSS2 genes. RESULTS: Gene expression analysis indicated that ACE-2, NRP-1, and TMPRSS2 were significantly upregulated in healthy clinical samples compared to oral lesions, while the reverse was true with IL-6 gene expression. Saturated and monounsaturated FAs were the major identified shared and unique FAs, respectively. Major shared FAs included palmitic, stearic and myristic acids with the highest percentage in the healthy oral cavity, while unique FAs included 17-octadecynoic acid in periapical abscess, petroselinic acid and L-lactic acid in periapical granuloma, and 1-nonadecene in the radicular cyst. Computational prediction showed that the binding affinity of identified FAs to ACE-2, TMPRSS2 and S protein were insignificant. Further, FA-treated mammalian cells showed significant overexpression of ACE-2, NRP-1 and TMPRSS2 genes except with L-lactic acid and oleic acid caused downregulation of NRP-1 gene, while 17-octadecynoic acid caused insignificant effect. CONCLUSION: Collectively, a healthy oral cavity is more susceptible to viral infection when compared to that complicated with periapical lesions. FAs play important role in viral infection and their balance can affect the viral loads. Shifting the balance towards higher levels of palmitic, stearic and 1-nonadecene caused significant upregulation of the aforementioned genes and hence higher viral loads. On the other hand, there is a reverse correlation between inflammation and expression of SARS-CoV-2 receptors. Therefore, a mouth preparation that can reduce the levels of palmitic, stearic and 1-nonadecene, while maintaining an immunomodulatory effect can be employed as a future protection strategy against viral infection.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Boca , Carga ViralRESUMEN
BACKGROUND: The microbiome of Severe-Early Childhood Caries (S-ECC), is characterized by an ecosystem comprising bacterial and fungal species, with a predominance of Candida species. Hence, an anti-cariogen effective against both bacteria and fungi would be valuable in the management of S-ECC. Here we evaluate the antifungal effect of silver diamine fluoride (SDF) against 35-clinical yeast isolates (Ten-each of C. albicans, C. krusei, C. tropicalis and five C. glabrata strains) from dentinal caries-lesions from S-ECC. RESULTS: Disc-diffusion and time-kill assays as well as MIC50 and MIC90 evaluations against therapeutic concentrations confirmed the broad-spectrum anti-candidal potency of SDF. Ultrastructural images revealed morphologic aberrations of yeast-cell walls on exposure to SDF. All C. krusei and C. glabrata isolates were significantly more sensitive to SDF, relative to the standard antifungal fluconazole. Further, SDF appears to effectively abrogate filamentation of C. albicans even at very low concentrations. CONCLUSIONS: Our data, for the first time, elucidate the antifungal potency of SDF, in addition to its known antibacterial activity, in the management of S-ECC.
Asunto(s)
Antifúngicos/farmacología , Candida/crecimiento & desarrollo , Caries Dental/prevención & control , Compuestos de Amonio Cuaternario/farmacología , Compuestos de Plata/farmacología , Biopelículas/efectos de los fármacos , Candida/clasificación , Candida/efectos de los fármacos , Candida/ultraestructura , Pared Celular/efectos de los fármacos , Pared Celular/ultraestructura , Niño , Farmacorresistencia Fúngica/efectos de los fármacos , Fluoruros Tópicos/farmacología , Humanos , Pruebas de Sensibilidad MicrobianaRESUMEN
Background: Helicobacter pylori (H. pylori) is one of the human pathogens proven to be present in the oral cavity due to microaerophilic nature of the dental biofilm. The present study aimed to investigate the presence of H. pylori in cavitated carious lesions of children by polymerase chain reaction (PCR). Study design: Forty-eight children aged between 4 to 7-years attending outpatient Pediatric clinic were enrolled in the study. Caries status and caries severity were assessed using the dmft and ICDAS caries index. Dentine samples were collected for DNA isolation for the detection of H. pylori by PCR. Results: H. pylori was detected among 30% of children with severe caries lesions detected by PCR. Overall, the mean ± SD of the dmft score for H. pylori positive children was higher compared to the negative control. Amongst the H. pylori-positive group, the decayed (mean-dt) number of teeth were significantly higher (p<0.05) than the other group. Moreover, association between severity of caries lesions (codes 5 and codes 6) and presence of H. pylori were significant (p<0.05) when compared negative group. Conclusion: The results demonstrate presence of H. pylori in the cavitated, non-gastric niche of children with severe caries, which possibly could serve as a reservoir for microbial dissemination to other sites of the body.
Asunto(s)
Caries Dental , Helicobacter pylori , Biopelículas , Niño , Preescolar , Humanos , Boca , Reacción en Cadena de la PolimerasaRESUMEN
Macrolide antibiotic azithromycin is widely used in clinical practice to treat respiratory tract infections and inflammatory diseases. However, its mechanism of action is not fully understood. Given the involvement of the CD27 pathway in the pathophysiology of various T-lymphocyte-mediated inflammatory, autoimmune, and lymphoproliferative diseases, we examined the impact of AZM on CD27 regulation and potential consequences on CD4+ and CD8+ T-cell phenotypes. Using cellular immunology approaches on healthy donors' peripheral blood mononuclear cells, we demonstrate AZM-mediated downregulation of surface CD27 expression as well as its extracellular release as soluble CD27. Notably, AZM-exposed CD27high (hi) cells were defective in their ability to expand compared to CD27intermediate (Int) and CD27low (lo) subsets. The defective CD27hi subset expansion was found to be associated with impaired cell proliferation and cell division. At the molecular level, the CD27hi subset exhibited lower mTOR activity than other subsets. Functionally, AZM treatment resulted in marked depletion of helper CD4+ (Th1) and cytotoxic CD8+ T-lymphocyte (Tc1)-associated CXCR3+CD27hi effector cells and inhibition of inflammatory cytokine IFN-γ production. These findings provide mechanistic insights on immunomodulatory features of AZM on T-lymphocyte by altering the CD27 pathway. From a clinical perspective, this study also sheds light on potential clinical benefits observed in patients on prophylactic AZM regimens against various respiratory diseases and opens avenues for future adjunct therapy against Th1- and Tc1-dominated inflammatory and autoimmune diseases.
Asunto(s)
Azitromicina , Transducción de Señal , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral , Humanos , Azitromicina/farmacología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fenotipo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Células TH1/inmunología , Células TH1/efectos de los fármacos , Antibacterianos/farmacología , Activación de Linfocitos/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/efectos de los fármacosRESUMEN
Introduction: The COVID-19 pandemic represented one of the most significant challenges to researchers and healthcare providers. Several factors determine the disease severity, whereas none alone can explain the tremendous variability. The Single nucleotide variants (SNVs) in angiotensin-converting enzyme-2 (ACE2) and transmembrane serine protease type-2 (TMPRSS2) genes affect the virus entry and are considered possible risk factors for COVID-19. Methods: We compiled a panel of gene variants from both genes and used in-silico analysis to predict their significance. We performed biological validation to assess their capacity to alter the ACE2 interaction with the virus spike protein. Subsequently, we conducted a retrospective comparative genome analysis on those variants in the Emirati patients with different disease severity (total of 96) along with 69 healthy control subjects. Results: Our results showed that the Emirati population lacks the variants that were previously reported as associated with disease severity, whereas a new variant in ACE2 "Chr X:g.15584534" was associated with disease severity specifically among female patients. In-silico analysis revealed that the new variant can determine the ACE2 gene transcription. Several cytokines (GM-CSF and IL-6) and chemokines (MCP-1/CCL2, IL-8/CXCL8, and IP-10/CXCL10) were markedly increased in COVID-19 patients with a significant correlation with disease severity. The newly reported genetic variant of ACE2 showed a positive correlation with CD40L, IL-1ß, IL-2, IL-15, and IL-17A in COVID-19 patients. Conclusion: Whereas COVID-19 represents now a past pandemic, our study underscores the importance of genetic factors specific to a population, which can influence both the susceptibility to viral infections and the level of severity; subsequently expected required preparedness in different areas of the world.
Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Citocinas , Polimorfismo de Nucleótido Simple , SARS-CoV-2 , Serina Endopeptidasas , Humanos , COVID-19/genética , Enzima Convertidora de Angiotensina 2/genética , Femenino , Masculino , SARS-CoV-2/fisiología , Citocinas/sangre , Citocinas/genética , Serina Endopeptidasas/genética , Emiratos Árabes Unidos/epidemiología , Persona de Mediana Edad , Adulto , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , AncianoRESUMEN
Background and Objective: Coronary artery disease (CAD) is a major cause of death worldwide. Revascularization via stent placement or coronary artery bypass grafting (CABG) are standard treatments for CAD. Despite a high success rate, these approaches are associated with long-term failure due to restenosis. Risk factors associated with restenosis were investigated using a case-control association study design. Methods: Five thousand two hundred and forty-two patients were enrolled in this study and were assigned as follows: Stenosis Group: 3570 patients with CAD >50% without a prior stent or CABG (1394 genotyped), and Restenosis Group: 1672 patients with CAD >50% and prior stent deployment or CABG (705 genotyped). Binomial regression models were applied to investigate the association of restenosis with diabetes, hypertension, and dyslipidemia. The genetic association with restenosis was conducted using PLINK 1.9. Results: Dyslipidemia is a major risk factor (Odds Ratio (OR) = 2.14, P-value <0.0001) for restenosis particularly among men (OR = 2.32, P < 0.0001), while type 2 diabetes (T2D) was associated with an increased risk of restenosis in women (OR = 1.36, P = 0.01). The rs9349379 (PHACTR1) and rs264 (LPL) were associated with an increased risk of restenosis in our patients. PHACTR1 variant was associated with increased risk of restenosis mainly in women and in diabetic patients, while the LPL variant was associated with increased risk of restenosis in men. Conclusion: The rs9349379 in PHACTR1 gene is significantly associated with restenosis, this association is more pronounced in women and in diabetic patients. The rs264 in LPL gene was associated with increased risk of restenosis in male patients.
Asunto(s)
Enfermedad de la Arteria Coronaria , Reestenosis Coronaria , Diabetes Mellitus Tipo 2 , Dislipidemias , Humanos , Masculino , Femenino , Diabetes Mellitus Tipo 2/complicaciones , Constricción Patológica/complicaciones , Enfermedad de la Arteria Coronaria/terapia , Factores de RiesgoRESUMEN
Vitamin D3 deficiency, obesity, and diabetes mellitus (DM) have been shown to increase the risk of cardiovascular diseases (CVDs). However, the early detection of vascular damage in those patients is still difficult to ascertain. MicroRNAs (miRNAs) are recognized to play a critical role in initiation and pathogenesis of vascular dysfunction. Herein, we aimed to identify circulating miRNA biomarkers of vascular dysfunction as early predictors of CVDs. We have recruited 23 middle-aged Emiratis patients with the following criteria: A healthy control group with vitamin D ≥ 20ng, and BMI < 30 (C1 group = 11 individuals); A vitamin D deficiency (Vit D level ≤ 20 ng) and obese (BMI ≥ 30) group (A1 group = 9 patients); A vitamin D deficiency, obese, plus DM (A2 group = 3 patients). Arterial stiffness via pulse wave velocity (PWV) was measured and the whole transcriptome analysis with qPCR validation for miRNA in plasma samples were tested. PWV relative to age was significantly higher in A1 group 19.4 ± 4.7 m/s and A2 group 18.3 ± 1.3 m/s compared to controls 14.7 ± 2.1 m/s (p < 0.05). Similar patterns were also observed in the Augmentation pressure (AP) and Alx%. Whole RNA-Sequencing revealed miR-182-5p; miR-199a-5p; miR-193a-5p; and miR-155-5p were differentially over-expressed (logFC > 1.5) in high-risk patients for CVDs vs healthy controls. Collectively, our result indicates that four specific circulating miRNA signature, may be utilized as non-invasive, diagnostic and prognostic biomarkers for early vascular damage in patients suffering from vitamin D deficiency, obesity and DM.
Asunto(s)
MicroARN Circulante , Diabetes Mellitus , MicroARNs , Deficiencia de Vitamina D , Persona de Mediana Edad , Humanos , Análisis de la Onda del Pulso , Biomarcadores , MicroARNs/genética , Obesidad/complicaciones , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/diagnóstico , Vitamina DRESUMEN
While it is considered one of the most common cancers and the leading cause of death in men worldwide, prognostic stratification and treatment modalities are still limited for patients with prostate cancer (PCa). Recently, the introduction of genomic profiling and the use of new techniques like next-generation sequencing (NGS) in many cancers provide novel tools for the discovery of new molecular targets that might improve our understanding of the genomic aberrations in PCa and the discovery of novel prognostic and therapeutic targets. In this study, we investigated the possible mechanisms through which Dickkopf-3 (DKK3) produces its possible protective role in PCa using NGS in both the DKK3 overexpression PCa cell line (PC3) model and our patient cohort consisting of nine PCa and five benign prostatic hyperplasia. Interestingly, our results have shown that DKK3 transfection-modulated genes are involved in the regulation of cell motility, senescence-associated secretory phenotype (SASP), and cytokine signaling in the immune system, as well as in the regulation of adaptive immune response. Further analysis of our NGS using our in vitro model revealed the presence of 36 differentially expressed genes (DEGs) between DKK3 transfected cells and PC3 empty vector. In addition, both CP and ACE2 genes were differentially expressed not only between the transfected and empty groups but also between the transfected and Mock cells. The top common DEGs between the DKK3 overexpression cell line and our patient cohort are the following: IL32, IRAK1, RIOK1, HIST1H2BB, SNORA31, AKR1B1, ACE2, and CP. The upregulated genes including IL32, HIST1H2BB, and SNORA31 showed tumor suppressor functions in various cancers including PCa. On the other hand, both IRAK1 and RIOK1 were downregulated and involved in tumor initiation, tumor progression, poor outcome, and radiotherapy resistance. Together, our results highlighted the possible role of the DKK3-related genes in protecting against PCa initiation and progression.
Asunto(s)
Hiperplasia Prostática , Neoplasias de la Próstata , Humanos , Masculino , Enzima Convertidora de Angiotensina 2/metabolismo , Neoplasias de la Próstata/patología , Línea Celular , Aldehído Reductasa/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismoRESUMEN
Cardiovascular diseases (CVDs) are highly associated with both vitamin D deficiency and obesity, two prevalent health conditions worldwide. Arterial stiffness, an independent predictor of CVDs, is particularly elevated in both conditions, yet the molecular mechanisms underlying this phenomenon remain elusive, hindering effective management of CVDs in this population. We recruited 20 middle-aged Emiratis, including 9 individuals with vitamin D deficiency (Vit D level ≤20 ng) and obesity (BMI ≥30) and 11 individuals as control with Vit D level >20 ng and BMI <30. We measured arterial stiffness using pulse wave velocity (PWV) and performed whole transcriptome sequencing to identify differentially expressed genes (DEGs) and enriched pathways. We validated these findings using qRT-PCR, Western blot, and multiplex analysis. PWV was significantly higher in the vitamin D deficient and obese group relative to controls (p ≤ 0.05). The DEG analysis revealed that pathways related to interleukin 1 (IL-1), nitrogen metabolism, HIF-1 signaling, and MAPK signaling were over-activated in the vitamin D deficient and obese group. We found that HIF-1alpha, NOX-I, NOX-II, IL-1b, IL-8, IL-10, and VEGF were significantly upregulated in the vitamin D deficient and obese group (p < 0.05). Our study provides new insights into the molecular mechanisms of arterial stiffness in vitamin D deficiency and obesity, demonstrating the role of oxidative stress and inflammation in this process. Our findings suggest that these biomarkers may serve as potential therapeutic targets for early prevention of CVDs. Further studies are needed to investigate these pathways and biomarkers with larger cohort.
RESUMEN
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disorder that mainly affects children and young adults. It is associated with debilitating and long-life complications. Therefore, understanding the factors that lead to the onset and development of these complications is crucial. To our knowledge this is the first study that attempts to identify the common differentially expressed genes (DEGs) in T1DM complications using whole transcriptomic profiling in United Arab Emirates (UAE) patients. The present multicenter study was conducted in different hospitals in UAE including University Hospital Sharjah, Dubai Hospital and Rashid Hospital. A total of fifty-eight Emirati participants aged above 18 years and with a BMI < 25 kg/m2 were recruited and forty-five of these participants had a confirmed diagnosis of T1DM. Five groups of complications associated with the latter were identified including hyperlipidemia, neuropathy, ketoacidosis, hypothyroidism and polycystic ovary syndrome (PCOS). A comprehensive whole transcriptomic analysis using NGS was conducted. The outcomes of the study revealed the common DEGs between T1DM without complications and T1DM with different complications. The results revealed seven common candidate DEGs, SPINK9, TRDN, PVRL4, MYO3A, PDLIM1, KIAA1614 and GRP were upregulated in T1DM complications with significant increase in expression of SPINK9 (Fold change: 5.28, 3.79, 5.20, 3.79, 5.20) and MYO3A (Fold change: 4.14, 6.11, 2.60, 4.33, 4.49) in hyperlipidemia, neuropathy, ketoacidosis, hypothyroidism and PCOS, respectively. In addition, functional pathways of ion transport, mineral absorption and cytosolic calcium concentration were involved in regulation of candidate upregulated genes related to neuropathy, ketoacidosis and PCOS, respectively. The findings of this study represent a novel reference warranting further studies to shed light on the causative genetic factors that are involved in the onset and development of T1DM complications.
Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus Tipo 1 , Hipotiroidismo , Cetosis , Síndrome del Ovario Poliquístico , Anciano , Calcio , Niño , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Femenino , Hospitales Universitarios , Humanos , Inhibidores de Serinpeptidasas Tipo Kazal , Transcriptoma , Emiratos Árabes Unidos , Adulto JovenRESUMEN
Glomerulonephritis (GN) is a complex disease with intricate underlying pathogenic mechanisms. The possible role of underlying complement dysregulation is not fully elucidated in some GN subsets, especially in the setting of autoimmunity or infection. In the current study, diagnosed cases of lupus nephritis (LN) and post-infectious GN (PIGN) were recruited for molecular genetic analysis and targeted next-generation DNA sequencing was performed for two main complement regulating genes: in the fluid phase; CFH, and on tissue surfaces; MCP. Three heterozygous pathogenic variants in CFH (Q172*, W701*, and W1096*) and one likely pathogenic heterozygous variant in MCP (C223R) have been identified in four of the studied LN cases. Additionally, among the several detected variants of uncertain significance, one novel variant (CFH:F614S) was identified in 74% of the studied LN cases and in 65% of the studied PIGN cases. This variant was detected for the first time in the Egyptian population. These findings suggest that subtle mutations may be present in complement regulating genes in patients with immune-complex mediated category of GN that may add to the disease pathogenesis. These findings also call for further studies to delineate the impact of these gene variants on the protein function, the disease course, and outcome.
Asunto(s)
Glomerulonefritis , Nefritis Lúpica , Factor H de Complemento , Proteínas del Sistema Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Egipto , Heterocigoto , Humanos , Nefritis Lúpica/genética , Proteína Cofactora de MembranaRESUMEN
Colorectal cancer (CRC) represents around 10% of all cancers, with an increasing incidence in the younger age group. The gut is considered a unique organ with its distinctive neuronal supply. The neuropeptide, human galanin, is widely distributed in the colon and expressed in many cancers, including the CRC. The current study aimed to explore the role of galanin at different stages of CRC. Eighty-one CRC cases (TNM stages I - IV) were recruited, and formalin-fixed paraffin-embedded samples were analyzed for the expression of galanin and galanin receptor 1 (GALR1) by immunohistochemistry (IHC). Galanin intensity was significantly lower in stage IV (n= 6) in comparison to other stages (p= 0.037 using the Mann-Whitney U test). Whole transcriptomics analysis using NGS was performed for selected samples based on the galanin expression by IHC [early (n=5) with high galanin expression and late (n=6) with low galanin expression]. Five differentially regulated pathways (using Absolute GSEA) were identified as drivers for tumor progression and associated with higher galanin expression, namely, cell cycle, cell division, autophagy, transcriptional regulation of TP53, and immune system process. The top shared genes among the upregulated pathways are AURKA, BIRC5, CCNA1, CCNA2, CDC25C, CDK2, CDK6, EREG, LIG3, PIN1, TGFB1, TPX2. The results were validated using real-time PCR carried out on four cell lines [two primaries (HCT116 and HT29) and two metastatic (LoVo and SK-Co-1)]. The current study shows galanin as a potential negative biomarker. Galanin downregulation is correlated with advanced CRC staging and linked to cell cycle and division, autophagy, transcriptional regulation of TP53 and immune system response.
RESUMEN
Periapical abscesses, radicular cysts, and periapical granulomas are the most frequently identified pathological lesions in the alveolar bone. While little is known about the initiation and progression of these conditions, the metabolic environment and the related immunological behaviors were examined for the first time to model the development of each pathological condition. Metabolites were extracted from each lesion and profiled using gas chromatography-mass spectrometry in comparison with healthy pulp tissue. The metabolites were clustered and linked to their related immune cell fractions. Clusters I and J in the periapical abscess upregulated the expression of MMP-9, IL-8, CYP4F3, and VEGF, while clusters L and M were related to lipophagy and apoptosis in radicular cyst, and cluster P in periapical granuloma, which contains L-(+)-lactic acid and ethylene glycol, was related to granuloma formation. Oleic acid, 17-octadecynoic acid, 1-nonadecene, and L-(+)-lactic acid were significantly the highest unique metabolites in healthy pulp tissue, periapical abscess, radicular cyst, and periapical granuloma, respectively. The correlated enriched metabolic pathways were identified, and the related active genes were predicted. Glutamatergic synapse (16-20),-hydroxyeicosatetraenoic acids, lipophagy, and retinoid X receptor coupled with vitamin D receptor were the most significantly enriched pathways in healthy control, abscess, cyst, and granuloma, respectively. Compared with the healthy control, significant upregulation in the gene expression of CYP4F3, VEGF, IL-8, TLR2 (P < 0.0001), and MMP-9 (P < 0.001) was found in the abscesses. While IL-12A was significantly upregulated in cysts (P < 0.01), IL-17A represents the highest significantly upregulated gene in granulomas (P < 0.0001). From the predicted active genes, CIBERSORT suggested the presence of natural killer cells, dendritic cells, pro-inflammatory M1 macrophages, and anti-inflammatory M2 macrophages in different proportions. In addition, the single nucleotide polymorphisms related to IL-10, IL-12A, and IL-17D genes were shown to be associated with periapical lesions and other oral lesions. Collectively, the unique metabolism and related immune response shape up an environment that initiates and maintains the existence and progression of these oral lesions, suggesting an important role in diagnosis and effective targeted therapy.
Asunto(s)
Absceso Periapical/inmunología , Granuloma Periapical/inmunología , Quiste Radicular/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Adulto , Anciano , Femenino , Humanos , Masculino , Metabolómica , Persona de Mediana Edad , Absceso Periapical/metabolismo , Absceso Periapical/patología , Granuloma Periapical/metabolismo , Granuloma Periapical/patología , Quiste Radicular/metabolismo , Quiste Radicular/patología , Linfocitos T Colaboradores-Inductores/metabolismo , Adulto JovenRESUMEN
To investigate intracellular heterogeneity, cell capture of particular cell populations followed by transcriptome analysis has been highly effective in freshly isolated tissues. However, this approach has been quite challenging in immunostained formalin-fixed paraffin-embedded (FFPE) sections. This study aimed at combining the standard pathology techniques, immunostaining and laser capture microdissection, with whole RNA-sequencing and bioinformatics analysis to characterize FFPE breast cancer cell populations with heterogeneous expression of progesterone receptor (PR). Immunocytochemical analysis revealed that 60% of MCF-7 cells admixture highly express PR. Immunocytochemistry-based targeted RNA-seq (ICC-RNAseq) and in silico functional analysis revealed that the PR-high cell population is associated with upregulation in transcripts implicated in immunomodulatory and inflammatory pathways (e.g. NF-κB and interferon signaling). In contrast, the PR-low cell population is associated with upregulation of genes involved in metabolism and mitochondrial processes as well as EGFR and MAPK signaling. These findings were cross-validated and confirmed in FACS-sorted PR high and PR-low MCF-7 cells and in MDA-MB-231 cells ectopically overexpressing PR. Significantly, ICC-RNAseq could be extended to analyze samples captured at specific spatio-temporal states to investigate gene expression profiles using diverse biomarkers. This would also facilitate our understanding of cell population-specific molecular events driving cancer and potentially other diseases.
RESUMEN
In asthma, most of the identified biomarkers pertain to the Th2 phenotype and no known biomarkers have been verified for severe asthmatics. Therefore, identifying biomarkers using the integrative phenotype-genotype approach in severe asthma is needed. The study aims to identify novel biomarkers as genes or pathways representing the core drivers in asthma development, progression to the severe form, resistance to therapy, and tissue remodeling regardless of the sample cells or tissues examined. Comprehensive reanalysis of publicly available transcriptomic data that later was validated in vitro, and locally recruited patients were used to decipher the molecular basis of asthma. Our in-silicoanalysis revealed a total of 10 genes (GPRC5A, SFN, ABCA1, KRT8, TOP2A, SERPINE1, ANLN, MKI67, NEK2, and RRM2) related to cell cycle and proliferation to be deranged in the severe asthmatic bronchial epithelium and fibroblasts compared to their healthy counterparts. In vitro, RT qPCR results showed that (SERPINE1 and RRM2) were upregulated in severe asthmatic bronchial epithelium and fibroblasts, (SFN, ABCA1, TOP2A, SERPINE1, MKI67, and NEK2) were upregulated in asthmatic bronchial epithelium while (GPRC5A and KRT8) were upregulated only in asthmatic bronchial fibroblasts. Furthermore, MKI76, RRM2, and TOP2A were upregulated in Th2 high epithelium while GPRC5A, SFN, ABCA1 were upregulated in the blood of asthmatic patients. SFN, ABCA1 were higher, while MKI67 was lower in severe asthmatic with wheeze compared to nonasthmatics with wheezes. SERPINE1 and GPRC5A were downregulated in the blood of eosinophilic asthmatics, while RRM2 was upregulated in an acute attack of asthma. Validation of the gene expression in PBMC of locally recruited asthma patients showed that SERPINE1, GPRC5A, SFN, ABCA1, MKI67, and RRM2 were downregulated in severe uncontrolled asthma. We have identified a set of biologically crucial genes to the homeostasis of the lung and in asthma development and progression. This study can help us further understand the complex interplay between the transcriptomic data and the external factors which may deviate our understanding of asthma heterogeneity.
Asunto(s)
Asma/sangre , Biomarcadores/metabolismo , Ciclo Celular , Regulación de la Expresión Génica , Leucocitos Mononucleares/citología , Alergia e Inmunología , Bronquios/patología , Proliferación Celular , Simulación por Computador , Metilación de ADN , Células Epiteliales/metabolismo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Células Asesinas Naturales/citología , Fenotipo , Mucosa Respiratoria/metabolismo , Biología de Sistemas , Linfocitos T/citología , Células Th2 , Transcriptoma , Regulación hacia ArribaRESUMEN
Aim: Colorectal cancer (CRC) is one of the leading cancers in the world. Even though its mortality and pathophysiology are well documented in the US and the European countries, it is seldom studied in North African population. Recent studies have shown link of HER2 overexpression in oesophageal and gastric cancers. The aim of this study is to assess the HER2 protein and mRNA expression and its correlation with tumor pathogenesis in Libyan CRC patients.Methodology: A total of 17 FFPE tissue blocks were collected from patients with primary CRC. The HER2 protein expression was assessed by immunohistochemistry and the mRNA expression was assessed using qRT-PCR. Survival analysis of the role of HER2 overexpression on rectal adenocarcinoma was carried out on additional 165 patients.Results: From the CRC cohort, adenocarcinoma was found to be more frequent accounting for 88.2%, and 11.8% for mucinous adenocarcinomas. Almost 47% of the cases were positive for HER2 (score ≥ 2+) and about 50% adenocarcinoma cases with tumor grade II were positive for HER2. Moreover, 57.4% adenocarcinoma patients with grade-II tumor had undergone right hemicolectomy. Furthermore, significant correlation (p = 0.03) between the HER2 mRNA expression with the tumor grade was observed. In addition, poor overall all survival was observed with high HER2 expression in rectum adenocarcinoma.Conclusion: To our knowledge, this is the first study that HER2 overexpression correlates with more aggressive colorectal cancer in North African population. Our study shows that HER2 overexpression associates with right colon surgeries. Also, the correlation of mRNA and protein expression could warrant the implementation of a nationwide screening program for HER2 positivity in CRC patients. Taken together, stratifying patients according to HER2 expression can help in the diagnosis and prognosis of CRC patients from North African origin.
Asunto(s)
Neoplasias Colorrectales , Receptor ErbB-2 , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/diagnóstico , Humanos , Inmunohistoquímica , Pronóstico , Receptor ErbB-2/genéticaRESUMEN
Immunomodulation and chronic inflammation are important mechanisms utilized by cancer cells to evade the immune defense and promote tumor progression. Therefore, various efforts were focused on the development of approaches to reprogram the immune response to increase the immune detection of cancer cells and enhance patient response to various types of therapy. A number of regulatory proteins were investigated and proposed as potential targets for immunomodulatory therapeutic approaches including p53 and Snail. In this study, we investigated the immunomodulatory effect of disrupting Snail-p53 binding induced by the oncogenic KRAS to suppress p53 signaling. We analyzed the transcriptomic profile mediated by Snail-p53 binding inhibitor GN25 in non-small cell lung cancer cells (A549) using Next generation whole RNA-sequencing. Notably, we observed a significant enrichment in transcripts involved in immune response pathways especially those contributing to neutrophil (IL8) and T-cell mediated immunity (BCL6, and CD81). Moreover, transcripts associated with NF-κB signaling were also enriched which may play an important role in the immunomodulatory effect of Snail-p53 binding. Further analysis revealed that the immune expression signature of GN25 overlaps with the signature of other therapeutic compounds known to exhibit immunomodulatory effects validating the immunomodulatory potential of targeting Snail-p53 binding. The effects of GN25 on the immune response pathways suggest that targeting Snail-p53 binding might be a potentially effective therapeutic strategy.