Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37445938

RESUMEN

Classic diffusely infiltrating lobular carcinoma has imaging features divergent from the breast cancers originating from the terminal ductal lobular units and from the major lactiferous ducts. Although the term "invasive lobular carcinoma" implies a site of origin within the breast lobular epithelium, we were unable to find evidence supporting this assumption. Exceptional excess of fibrous connective tissue and the unique cell architecture combined with the aberrant features at breast imaging suggest that this breast malignancy has not originated from cells lining the breast ducts and lobules. The only remaining relevant component of the fibroglandular tissue is the mesenchyme. The cells freshly isolated and cultured from diffusely infiltrating lobular carcinoma cases contained epithelial-mesenchymal hybrid cells with both epithelial and mesenchymal properties. The radiologic and histopathologic features of the tumours and expression of the mesenchymal stem cell positive markers CD73, CD90, and CD105 all suggest development in the direction of mesenchymal transition. These hybrid cells have tumour-initiating potential and have been shown to have poor prognosis and resistance to therapy targeted for malignancies of breast epithelial origin. Our work emphasizes the need for new approaches to the diagnosis and therapy of this highly fatal breast cancer subtype.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Lobular , Glándulas Mamarias Humanas , Humanos , Femenino , Carcinoma Lobular/metabolismo , Neoplasias de la Mama/metabolismo , Mama/metabolismo , Células Epiteliales/metabolismo , Glándulas Mamarias Humanas/metabolismo , Carcinoma Ductal de Mama/patología
2.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36901987

RESUMEN

The disease-residual transcriptomic profile (DRTP) within psoriatic healed/resolved skin and epidermal tissue-resident memory T (TRM) cells have been proposed to be crucial for the recurrence of old lesions. However, it is unclear whether epidermal keratinocytes are involved in disease recurrence. There is increasing evidence regarding the importance of epigenetic mechanisms in the pathogenesis of psoriasis. Nonetheless, the epigenetic changes that contribute to the recurrence of psoriasis remain unknown. The aim of this study was to elucidate the role of keratinocytes in psoriasis relapse. The epigenetic marks 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) were visualized using immunofluorescence staining, and RNA sequencing was performed on paired never-lesional and resolved epidermal and dermal compartments of skin from psoriasis patients. We observed diminished 5-mC and 5-hmC amounts and decreased mRNA expression of the ten-eleven translocation (TET) 3 enzyme in the resolved epidermis. SAMHD1, C10orf99, and AKR1B10: the highly dysregulated genes in resolved epidermis are known to be associated with pathogenesis of psoriasis, and the DRTP was enriched in WNT, TNF, and mTOR signaling pathways. Our results suggest that epigenetic changes detected in epidermal keratinocytes of resolved skin may be responsible for the DRTP in the same regions. Thus, the DRTP of keratinocytes may contribute to site-specific local relapse.


Asunto(s)
Psoriasis , Transcriptoma , Humanos , Epigenómica , Piel/metabolismo , Queratinocitos/metabolismo , Epidermis/metabolismo , Psoriasis/metabolismo
3.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569367

RESUMEN

The proper functioning of mesenchymal stem cells (MSCs) is of paramount importance for the homeostasis of the body. Inflammation and infection can alter the function of MSCs, which can also affect the regenerative potential and immunological status of tissues. It is not known whether human herpes simplex viruses 1 and 2 (HSV1 and HSV2), well-known human pathogens that can cause lifelong infections, can induce changes in MSCs. In non-healing ulcers, HSV infection is known to affect deeper tissue layers. In addition, HSV infection can recur after initially successful cell therapies. Our aim was to study the response of adipose-derived MSCs (ADMSCs) to HSV infection in vitro. After confirming the phenotype and differentiation capacity of the isolated cells, we infected the cells in vitro with HSV1-KOS, HSV1-532 and HSV2 virus strains. Twenty-four hours after infection, we examined the gene expression of the cells via RNA-seq and RT-PCR; detected secreted cytokines via protein array; and determined autophagy via Western blot, transmission electron microscopy (TEM) and fluorescence microscopy. Infection with different HSV strains resulted in different gene-expression patterns. In addition to the activation of pathways characteristic of viral infections, distinct non-immunological pathways (autophagy, tissue regeneration and differentiation) were also activated according to analyses with QIAGEN Ingenuity Pathway Analysis, Kyoto Encyclopedia of Genes and Genome and Genome Ontology Enrichment. Viral infections increased autophagy, as confirmed via TEM image analysis, and also increased levels of the microtubule-associated protein light chain 3 (LC3B) II protein. We identified significantly altered accumulation for 16 cytokines involved in tissue regeneration and inflammation. Our studies demonstrated that HSV infection can alter the viability and immunological status of ADMSCs, which may have implications for ADMSC-based cell therapies. Alterations in autophagy can affect numerous processes in MSCs, including the inhibition of tissue regeneration as well as pathological differentiation.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Células Madre Mesenquimatosas , Humanos , Herpesvirus Humano 1/fisiología , Herpes Simple/patología , Células Madre Mesenquimatosas/metabolismo , Herpesvirus Humano 2 , Citocinas/metabolismo , Inflamación/metabolismo
4.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36293012

RESUMEN

Generally, a reciprocal antagonistic interaction exists between the antiviral type I interferon (IFN) and the antibacterial nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing 3 (NLRP3)-dependent IL-1ß pathways that can significantly shape immune responses. Plasmacytoid dendritic cells (pDCs), as professional type I IFN-producing cells, are the major coordinators of antiviral immunity; however, their NLRP3-dependent IL-1ß secretory pathway is poorly studied. Our aim was to determine the functional activity of the IL-1ß pathway and its possible interaction with the type I IFN pathway in pDCs. We found that potent nuclear factor-kappa B (NF-κB) inducers promote higher levels of pro-IL-1ß during priming compared to those activation signals, which mainly trigger interferon regulatory factor (IRF)-mediated type I IFN production. The generation of cleaved IL-1ß requires certain secondary signals in pDCs and IFN-α or type I IFN-inducing viruses inhibit IL-1ß production of pDCs, presumably by promoting the expression of various NLRP3 pathway inhibitors. In line with that, we detected significantly lower IL-1ß production in pDCs of psoriasis patients with elevated IFN-α levels. Collectively, our results show that the NLRP3-dependent IL-1ß secretory pathway is inducible in pDCs; however, it may only prevail under inflammatory conditions, in which the type I IFN pathway is not dominant.


Asunto(s)
Interferón Tipo I , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interferón Tipo I/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Interleucina-1beta/metabolismo , Células Dendríticas , Interferón-alfa/metabolismo , Antivirales/metabolismo , Factores Reguladores del Interferón/metabolismo , Antibacterianos/metabolismo , Nucleótidos/metabolismo , Inflamasomas/metabolismo
5.
Am J Physiol Cell Physiol ; 321(5): C798-C811, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34524930

RESUMEN

Altered esophageal ion transport mechanisms play a key role in inflammatory and cancerous diseases of the esophagus, but epithelial ion processes have been less studied in the esophagus because of the lack of a suitable experimental model. In this study, we generated three-dimensional (3D) esophageal organoids (EOs) from two different mouse strains and characterized the ion transport processes of the EOs. EOs form a cell-filled structure with a diameter of 250-300 µm and were generated from epithelial stem cells as shown by FACS analysis. Using conventional PCR and immunostaining, the presence of Slc26a6 Cl-/HCO3- anion exchanger (AE), Na+/H+ exchanger (NHE), Na+/HCO3- cotransporter (NBC), cystic fibrosis transmembrane conductance regulator (CFTR), and anoctamin 1 Cl- channels was detected in EOs. Microfluorimetric techniques revealed high NHE, AE, and NBC activities, whereas that of CFTR was relatively low. In addition, inhibition of CFTR led to functional interactions between the major acid-base transporters and CFTR. We conclude that EOs provide a relevant and suitable model system for studying the ion transport mechanisms of esophageal epithelial cells, and they can be also used as preclinical tools to assess the effectiveness of novel therapeutic compounds in esophageal diseases associated with altered ion transport processes.


Asunto(s)
Células Epiteliales/metabolismo , Esófago/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Organoides/metabolismo , Células Madre/metabolismo , Animales , Anoctamina-1/genética , Anoctamina-1/metabolismo , Antiportadores/genética , Antiportadores/metabolismo , Técnicas de Cultivo de Célula , Células Cultivadas , Antiportadores de Cloruro-Bicarbonato/genética , Antiportadores de Cloruro-Bicarbonato/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Esófago/citología , Femenino , Transporte Iónico , Masculino , Proteínas de Transporte de Membrana/genética , Ratones Endogámicos C57BL , Organoides/citología , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
6.
Exp Cell Res ; 374(2): 290-303, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30529407

RESUMEN

D-type cyclins are important regulatory proteins of the G1/S phase of the cell cycle however, their specific functions are only partially understood. We show that silencing of individual D-type cyclins has no effect on the proliferation and morphology of Immortalized non-tumorigenic human epidermal (HaCaT) cells, while double and triple D cyclin silencing results in the failure of the cytokinesis leading to the appearance of large multinucleated cells. Both CDC20 and Ki67 mRNA is downregulated in these cells. Ki67 mRNA silenced cells show similar multinucleated cellular phenotype as double or triple D cyclin silenced cells without affecting D cyclin expression, suggesting that Ki67 is necessary for normal G2/M transition. Our data have revealed that cyclin D1 may have a leading role in G1/S phase regulation and suggest an incomplete functional overlap among D cyclins. Our results indicate that beside their well-known functions during the G0-G1/S phase, D-type cyclins play a pivotal role in the regulation of mitosis via influencing Ki67 expression in a downstream manner probably through E2F1 activation in HaCaT cells.


Asunto(s)
Ciclo Celular/fisiología , Ciclina D/metabolismo , Antígeno Ki-67/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Humanos , Mitosis/fisiología , ARN Mensajero/metabolismo
7.
Differentiation ; 107: 24-34, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31152959

RESUMEN

Bone graft substitutes and bone void fillers are predominantly used to treat bone defects and bone fusion in orthopaedic surgery. Some aragonite-based scaffolds of coralline exoskeleton origin exhibit osteoconductive properties and are described as useful bone repair scaffolds. The purpose of this study was to evaluate the in vitro osteogenic potential of the bone phase of a novel aragonite-based bi-phasic osteochondral scaffold (Agili-C™, CartiHeal Ltd.) using adult human bone marrow-derived mesenchymal stem cells (MSCs). Analyses were performed at several time intervals: 3, 7, 14, 21, 28 and 42 days post-seeding. Osteogenic differentiation was assessed by morphological characterisation using light microscopy after Alizarin red and von Kossa staining, and scanning electron microscopy. The transcript levels of alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), bone gamma-carboxyglutamate (BGLAP), osteonectin (SPARC) and osteopontin (SPP1) were determined by quantitative PCR. Proliferation was assessed by a thymidine incorporation assay and proliferating cell nuclear antigen (PCNA) immunocytochemistry. Our results demonstrate that the bone phase of the bi-phasic aragonite-based scaffold supports osteogenic differentiation and enhanced proliferation of bone marrow-derived MSCs at both the molecular and histological levels. The scaffold was colonized by differentiating MSCs, suggesting its suitability for incorporation into bone voids to accelerate bone healing, remodelling and regeneration. The mechanism of osteogenic differentiation involves scaffold surface modification with de novo production of calcium phosphate deposits, as revealed by energy dispersive spectroscopy (EDS) analyses. This novel coral-based scaffold may promote the rapid formation of high quality bone during the repair of osteochondral lesions.


Asunto(s)
Carbonato de Calcio , Células Madre Mesenquimatosas/citología , Osteogénesis , Andamios del Tejido , Sustitutos de Huesos/química , Carbonato de Calcio/química , Fosfatos de Calcio/metabolismo , Células Cultivadas , Humanos , Ingeniería de Tejidos
8.
Int J Mol Sci ; 21(3)2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012692

RESUMEN

Purpose: To investigate the mechanism by which resveratrol acts upon retinal pigment epithelial (RPE) cells and to characterize its effect upon autophagy, survival, and inflammation, with consequent implications to treatment for age-related macular degeneration (AMD). METHODS: Cultured ARPE-19 cells were exposed to 10 and 50 µM resveratrol. Cell survival/death was determined by annexin-FITC/propidium iodide using flow cytometry, while autophagy was studied by detecting autophagic vacuoles formation (acridine orange and transmission electron microscopy), as well as LC3II/I ratio and p62 expression by Western blot. In addition, time-lapse confocal microscopy of a pDENDRA-LC3 expression vector was performed to detect autophagy in transfected ARPE-19 cells under the different treatment conditions. Inhibition of proteasomal and autophagy-lysosomal fusion was carried out by MG-132 and chloroquine, respectively, while induction of autophagy was achieved by rapamycin treatment. Detection of secreted cytokines by ARPE-19 cells using Human XL Cytokine Array was performed under oxidative stress (H2O2) and resveratrol treatments, respectively. RESULTS: Resveratrol induced autophagy in ARPE-19 cells as determined by augmented presence of autophagic vacuoles, increased LC3II/I ratio and decreased p62 expression, as well as time-lapse confocal microscopy using pDENDRA-LC3 expression vector. Resveratrol acted similarly to proteasomal inhibition and downstream of mammalian target of rapamycin (mTOR), since upstream inhibition of autophagy by 3-methyladenine could not inhibit autophagy in ARPE-19 cells. Co-treatmeant by rapamycin and/or proteasome inhibition showed no additive effect upon autophagy induction. ARPE-19 cells treated by resveratrol showed lower cell death rate compared to untreated controls. Resveratrol induced a specific anti-inflammatory response in ARPE-19 cells. CONCLUSIONS: Resveratrol can induce autophagy, pro-survival, and anti-inflammatory stimuli in ARPE-19 cells, properties which could be plausible to formulate future treatment modalities for AMD.


Asunto(s)
Antiinflamatorios/farmacología , Autofagia/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Resveratrol/farmacología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Células Epiteliales/ultraestructura , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo
9.
Int J Mol Sci ; 20(4)2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30791639

RESUMEN

Inefficient removal of dying retinal pigment epithelial (RPE) cells by professional phagocytes can result in debris formation and development of age-related macular degeneration (AMD). Chronic oxidative stress and inflammation play an important role in AMD pathogenesis. Only a few well-established in vitro phagocytosis assay models exist. We propose human embryonic stem cell-derived-RPE cells as a new model for studying RPE cell removal by professional phagocytes. The characteristics of human embryonic stem cells-derived RPE (hESC-RPE) are similar to native RPEs based on their gene and protein expression profile, integrity, and barrier properties or regarding drug transport. However, no data exist about RPE death modalities and how efficiently dying hESC-RPEs are taken upby macrophages, and whether this process triggers an inflammatory responses. This study demonstrates hESC-RPEs can be induced to undergo anoikis or autophagy-associated cell death due to extracellular matrix detachment or serum deprivation and hydrogen-peroxide co-treatment, respectively, similar to primary human RPEs. Dying hESC-RPEs are efficiently engulfed by macrophages which results in high amounts of IL-6 and IL-8 cytokine release. These findings suggest that the clearance of anoikic and autophagy-associated dying hESC-RPEs can be used as a new model for investigating AMD pathogenesis or for testing the in vivo potential of these cells in stem cell therapy.


Asunto(s)
Células Madre Embrionarias Humanas/citología , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Autofagia , Biomarcadores , Diferenciación Celular , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Inmunofenotipificación , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Degeneración Macular , Estrés Oxidativo , Fagocitosis/inmunología
10.
Clin Exp Ophthalmol ; 45(5): 509-519, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28032398

RESUMEN

BACKGROUND: The study aims to characterise human corneal endothelial cell (HCEnC) cultures generated by the peel-and-digest method based on their surface protein/carbohydrate expression pattern. METHODS: Quantitative polymerase chain reaction was used to compare expression of vimentin, CD90, Cytokeratin-19, ZO-1 and Claudin 14 in cultured HCEnC and cell line B4G12 versus stromal cells. Fluorescence-activated cell sorting was used to assess surface protein distribution of cultured and uncultured HCEnC. Distribution of surface proteins/carbohydrates was visualised by immunofluorescent and lectin staining. RESULTS: Human corneal endothelial cell and B4G12 showed lower expression level for vimentin, CD90, Cytokeratin-19 compared with stromal cells; while ZO-1 was expressed in endothelial cells, Claudin 14 was detected in B4G12 only. Fluorescence-activated cell sorting analyses revealed CD166, CD47, CD44, CD54, CD73, CD90, CD105, CD106, CD112, CD146 and CD325 to be present, with CD34 to be absent from cultured HCEnC. Freshly isolated, non-cultivated HCEnCs were CD90, CD73, CD146 and CD325 positive. Carbohydrates were detected by lectins LCA, PHA E, PHA L, PSA, sWGA, Con A, RCA 120 and WGA, but cultured HCEnC showed negative for GSL I, SBA, DBA, PNA and UEA I. CONCLUSION: Cultures established by the peel-and-digest method are probably not prone to stromal contamination, but the cells are likely to undergo endothelial-to mesenchymal transition as suggested by apparent morphological changes.


Asunto(s)
Biomarcadores/metabolismo , Carbohidratos/análisis , ADN/genética , Endotelio Corneal/metabolismo , Proteínas del Ojo/genética , Regulación de la Expresión Génica , Supervivencia Celular , Células Cultivadas , Endotelio Corneal/citología , Proteínas del Ojo/biosíntesis , Citometría de Flujo , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Biochim Biophys Acta ; 1850(2): 435-46, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25450174

RESUMEN

BACKGROUND: The apopto-phagocytic gene expression patterns during clearance of dying cells in the retina and the effect of triamcinolone (TC) upon these processes have relevance to development of age-related macular degeneration (AMD). METHODS: ARPE-19 cells and primary human retinal pigment epithelium (hRPE) were induced to undergo cell death by anoikis and the clearance of these cells by living hRPE/ARPE-19 or human monocyte-derived macrophages (HMDMs) in the presence or absence of TC was quantified by flow cytometry. TaqMan low-density gene expression array determining known markers of phagocytosis and loss-of-function studies on selected apopto-phagocytic genes was carried out in HMDM engulfing anoikic cells. RESULTS: The glucocorticoid TC had a profound phagocytosis-enhancing effect on HMDM engulfing anoikic ARPE-19 or hRPE cells, causing a selective upregulation of the Mer tyrosine kinase (MERTK) receptor, while decreasing the expression of the AXL receptor tyrosine kinase and thrombospondin-1 (THSB-1). The key role of the MERTK could be demonstrated in HMDM engulfing dying cells using gene silencing as well as blocking antibodies. Similar pathways were found upregulated in living ARPE-19 engulfing anoikic ARPE-19 cells. Gas6 treatment enhanced phagocytosis in TC-treated HMDMs. CONCLUSIONS: Specific agonists of the Mertk receptor may have a potential role as phagocytosis enhancers in the retina and serve as future targets for AMD therapy. GENERAL SIGNIFICANCE: The use of Gas6 as enhancer of retinal phagocytosis via the MerTK receptor, alone or in combination with other specific ligands of the tyrosine kinase receptors' family may have a potential role in AMD therapy.


Asunto(s)
Anoicis/efectos de los fármacos , Antiinflamatorios/farmacología , Células Epiteliales/enzimología , Proteínas del Ojo/biosíntesis , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Macrófagos/metabolismo , Fagocitosis/efectos de los fármacos , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Tirosina Quinasas Receptoras/biosíntesis , Epitelio Pigmentado de la Retina/enzimología , Triamcinolona/farmacología , Anoicis/genética , Anticuerpos Neutralizantes/farmacología , Línea Celular , Células Epiteliales/citología , Proteínas del Ojo/genética , Femenino , Regulación Enzimológica de la Expresión Génica/genética , Silenciador del Gen/efectos de los fármacos , Humanos , Macrófagos/citología , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/enzimología , Degeneración Macular/genética , Masculino , Fagocitosis/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Epitelio Pigmentado de la Retina/citología , Tirosina Quinasa c-Mer
12.
Biochem Biophys Res Commun ; 450(4): 1383-9, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-25019983

RESUMEN

Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1ß, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin and adiponectin, suggesting that both glucose and fat metabolism may be affected by these drugs. These data further suggest that antipsychotic treatments in patients alter the gene expression patterns in adipocytes in a coordinated fashion and priming them for a low-level inflammatory state.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/genética , Antipsicóticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Diferenciación Celular , Humanos , Técnicas In Vitro , Reacción en Cadena de la Polimerasa
13.
Pharmaceutics ; 16(2)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38399341

RESUMEN

Medicated foams have emerged as promising alternatives to traditional carrier systems in pharmaceutical research. Their rapid and convenient application allows for effective treatment of extensive or hirsute areas, as well as sensitive or inflamed skin surfaces. Foams possess excellent spreading capabilities on the skin, ensuring immediate drug absorption without the need for intense rubbing. Our research focuses on the comparison of physicochemical and biopharmaceutical properties of three drug delivery systems: foam, the foam bulk liquid, and a conventional hydrogel. During the development of the composition, widely used diclofenac sodium was employed. The safety of the formulae was confirmed through an in vitro cytotoxicity assay. Subsequently, the closed Franz diffusion cell was used to determine drug release and permeation in vitro. Ex vivo Raman spectroscopy was employed to investigate the presence of diclofenac sodium in various skin layers. The obtained results of the foam were compared to the bulk liquid and to a conventional hydrogel. In terms of drug release, the foam showed a rapid release, with 80% of diclofenac released within 30 min. In summary, the investigated foam holds promising potential as an alternative to traditional dermal carrier systems, offering faster drug release and permeation.

14.
Front Cell Dev Biol ; 12: 1367242, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606318

RESUMEN

Introduction: Adipose tissue-derived mesenchymal stem cells are promising contributors to regenerative medicine, exhibiting the ability to regenerate tissues and modulate the immune system, which is particularly beneficial for addressing chronic inflammatory ulcers and wounds. Despite their inherent capabilities, research suggests that pretreatment amplifies therapeutic effectiveness. Methods: Our experimental design exposed adipose-derived mesenchymal stem cells to six inflammatory factors for 24 h. We subsequently evaluated gene expression and proteome profile alterations and observed the wound closure rate post-treatment. Results: Specific pretreatments, such as IL-1ß, notably demonstrated an accelerated wound-healing process. Analysis of gene and protein expression profiles revealed alterations in pathways associated with tissue regeneration. Discussion: This suggests that licensed cells exhibit potentially higher therapeutic efficiency than untreated cells, shedding light on optimizing regenerative strategies using adipose tissue-derived stem cells.

15.
J Biotechnol ; 391: 20-32, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38815810

RESUMEN

Pancreatic cancer (PC) poses a substantial global health challenge, ranking as the fourth leading cause of cancer-related deaths due to its high mortality rate. Late-stage diagnoses are common due to the absence of specific symptoms. Pancreatic ductal adenocarcinoma (PDAC) accounts for the majority of PC cases. Recent research has suggested a potential link between elevated serum levels of bile acids (BAs) and tumorigenesis of PDAC. This study aims to understand how taurochenodeoxycholic acid (TCDCA), a secondary BA, influences PDAC using RNA sequencing techniques on the Capan-1 cell line. We identified 2,950 differentially expressed genes (DEGs) following TCDCA treatment, with 1,597 upregulated and 1,353 downregulated genes. These DEGs were associated with critical PDAC pathways, including coagulation, angiogenesis, cell migration, and signaling regulation. Furthermore, we reviewed relevant literature highlighting genes like DKK-1, KRT80, UPLA, and SerpinB2, known for their roles in PDAC tumorigenesis and metastasis. Our study sheds light on the complex relationship between BAs and PDAC, offering insights into potential diagnostic markers and therapeutic targets. Further research is needed to unravel these findings' precise mechanisms and clinical implications, potentially improving PDAC diagnosis and treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas , Ácido Tauroquenodesoxicólico , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ácido Tauroquenodesoxicólico/farmacología , Carcinoma Ductal Pancreático/genética , Análisis de Secuencia de ARN , Movimiento Celular/efectos de los fármacos
16.
Eur J Pharm Sci ; 193: 106666, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38081373

RESUMEN

Transdermal delivery of active ingredients is a challenge for pharmaceutical technology due to their inadequate penetration properties and the barrier function of the skin. The necessity of painless, effective, topical therapy for the aging population is growing, and a variety of diclofenac sodium-containing semi-solid preparations are available to alleviate the symptoms of these ailments. Our purpose was to formulate a novel composition with higher drug content to enhance drug release and permeation, thereby providing more effective therapy. Another goal was to maintain the concentration of the organic solvent mixture below 30%, to protect the skin barrier. Firstly, literature and market research were conducted, based on which the appropriate excipients for the target formulation were selected. Solubility tests were conducted with binary and ternary mixtures. As a result, the optimal ternary mixture was chosen. Hydrogels containing 1, 5, and 7% of diclofenac sodium were prepared and the stability of the formulations were studied by microscopic measurements and cytotoxicity test were carried out of the components also. The release and permeation of diclofenac sodium were investigated in different concentrations. It can be concluded that we have succeeded in preparing a topically applicable stable diclofenac sodium hydrogel with higher concentration, drug release, and improved skin permeation than the formulations available on the market.


Asunto(s)
Antiinflamatorios no Esteroideos , Diclofenaco , Absorción Cutánea , Hidrogeles/metabolismo , Piel/metabolismo , Administración Cutánea
17.
BMC Genomics ; 14: 900, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24344983

RESUMEN

BACKGROUND: The surface of the human eye is covered by corneal epithelial cells (CECs) which regenerate from a small population of limbal epithelial stem cells (LESCs). Cell therapy with LESCs is a non-penetrating treatment for preventing blindness due to LESC deficiency or dysfunction. Our aim was to identify new putative molecular markers and upstream regulators in the LESCs and associated molecular pathways. RESULTS: Genome-wide microarray transcriptional profiling was used to compare LESCs to differentiated human CECs. Ingenuity-based pathway analysis was applied to identify upstream regulators and pathways specific to LESCs. ELISA and flow cytometry were used to measure secreted and surface expressed proteins, respectively. More than 2 fold increase and decrease in expression could be found in 1830 genes between the two cell types. A number of molecules functioning in cellular movement (381), proliferation (567), development (552), death and survival (520), and cell-to-cell signaling (290) were detected having top biological functions in LESCs and several of these were confirmed by flow cytometric surface protein analysis. Custom-selected gene groups related to stemness, differentiation, cell adhesion, cytokines and growth factors as well as angiogenesis could be analyzed. The results show that LESCs play a key role not only in epithelial differentiation and tissue repair, but also in controlling angiogenesis and extracellular matrix integrity. Some pro-inflammatory cytokines were found to be important in stemness-, differentiation- and angiogenesis-related biological functions: IL-6 and IL-8 participated in most of these biological pathways as validated by their secretion from LESC cultures. CONCLUSIONS: The gene and molecular pathways may provide a more specific understanding of the signaling molecules associated with LESCs, therefore, help better identify and use these cells in the treatment of ocular surface diseases.


Asunto(s)
Células Epiteliales/citología , Epitelio Corneal/citología , Limbo de la Córnea/citología , Células Madre/citología , Biomarcadores/metabolismo , Diferenciación Celular , Células Cultivadas , Células Epiteliales/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Células Madre/metabolismo , Transcriptoma
18.
Int J Bioprint ; 9(2): 665, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065656

RESUMEN

256Diabetes is an autoimmune disease that ensues when the pancreas does not deliver adequate insulin or when the body cannot react to the existing insulin. Type 1 diabetes is an autoimmune disease defined by continuous high blood sugar levels and insulin deficiency due to ß-cell destruction in the islets of Langerhans (pancreatic islets). Long-term complications, such as vascular degeneration, blindness, and renal failure, result from periodic glucose-level fluctuations following exogenous insulin therapy. Nevertheless, the shortage of organ donors and the lifelong dependency on immunosuppressive drugs limit the transplantation of the entire pancreas or pancreas islet, which is the therapy for this disease. Although encapsulating pancreatic islets using multiple hydrogels creates a semi-privileged environment to prevent immune rejection, hypoxia that occurs in the core of the capsules is the main hindrance that should be solved. Bioprinting technology is an innovative process in advanced tissue engineering that allows the arranging of a wide array of cell types, biomaterials, and bioactive factors as a bioink to simulate the native tissue environment for fabricating clinically applicable bioartificial pancreatic islet tissue. Multipotent stem cells have the potential to be a possible solution for donor scarcity and can be a reliable source for generating autograft and allograft functional ß-cells or even pancreatic islet-like tissue. The use of supporting cells, such as endothelial cells, regulatory T cells, and mesenchymal stem cells, in the bioprinting of pancreatic islet-like construct could enhance vasculogenesis and regulate immune activity. Moreover, scaffolds bioprinted using biomaterials that can release oxygen postprinting or enhance angiogenesis could increase the function of ß-cells and the survival of pancreatic islets, which could represent a promising avenue.

19.
Biomedicines ; 11(11)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38002017

RESUMEN

BACKGROUND: Phenol-soluble modulins (PSMs) are pore-forming toxins (PFTs) produced by staphylococci. PSMs exert diverse cellular effects, including lytic, pro-apoptotic, pro-inflammatory and antimicrobial actions. Since the effects of PSMs on autophagy have not yet been reported, we evaluated the autophagic activity in HaCaT keratinocytes treated with recombinant PSMα3. METHODS: The autophagic flux and levels of autophagic marker proteins were determined using Western blot analysis. Subcellular localization of LC3B and Beclin-1 was investigated using an indirect immunofluorescence assay. The ultrastructural features of control and PSMα3-treated cells were evaluated via transmission electron microscopy. Cytoplasmic acidification was measured via acridine orange staining. Phosphorylation levels of protein kinases, implicated in autophagy regulation, were studied using a phospho-kinase array and Western blot analysis. RESULTS: PSMα3 facilitated the intracellular redistribution of LC3B, increased the average number of autophagosomes per cell, promoted the development of acidic vesicular organelles, elevated the levels of LC3B-II, stimulated autophagic flux and triggered a significant decrease in the net autophagic turnover rate. PSMα3 induced the accumulation of autophagosomes/autolysosomes, amphisomes and multilamellar bodies at the 0.5, 6 and 24 h time points, respectively. The phospho-Akt1/2/3 (T308 and S473), and phospho-mTOR (S2448) levels were decreased, whereas the phospho-Erk1/2 (T202/Y204 and T185/Y187) level was increased in PSMα3-treated cells. CONCLUSIONS: In HaCaT keratinocytes, PSMα3 stimulates autophagy. The increased autophagic activity elicited by sub-lytic PSM concentrations might be an integral part of the cellular defense mechanisms protecting skin homeostasis.

20.
Int J Bioprint ; 9(2): 663, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065668

RESUMEN

The importance of three-dimensional (3D) models in pharmacological tests and personalized therapies is significant. These models allow us to gain insight into the cell response during drug absorption, distribution, metabolism, and elimination in an organ-like system and are suitable for toxicological testing. In personalized and regenerative medicine, the precise characterization of artificial tissues or drug metabolism processes is more than crucial to gain the safest and the most effective treatment for the patients. Using these 3D cell cultures derived directly from patient, such as spheroids, organoids, and bioprinted structures, allows for testing drugs before administration to the patient. These methods allow us to select the most appropriate drug for the patient. Moreover, they provide chance for better recovery of patients, since time is not wasted during therapy switching. These models could be used in applied and basic research as well, because their response to treatments is quite similar to that of the native tissue. Furthermore, they may replace animal models in the future because these methods are cheaper and can avoid interspecies differences. This review puts a spotlight on this dynamically evolving area and its application in toxicological testing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA