Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ann Neurol ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096063

RESUMEN

OBJECTIVES: Spinocerebellar ataxia type 1 (SCA1) is a rare autosomal dominant neurodegenerative disease. Objective surrogate markers sensitive to detect changes in disease severity are needed to reduce sample sizes in interventional trials and identification of predictors of faster disease progression would facilitate patient selection, enrichment, or stratification in such trials. METHODS: We performed a prospective 1-year longitudinal, multimodal study in 34 ataxic SCA1 individuals and 21 healthy controls. We collected clinical, patient-reported outcomes, biochemical and magnetic resonance (MR) biomarkers at baseline and after 1 year. We determined 1-year progression and evaluated the potential predictive value of several baseline markers on 1-year disease progression. RESULTS: At baseline, multiple structural and spectroscopic MR markers in pons and cerebellum differentiated SCA1 from healthy controls and correlated with disease severity. Plasma and cerebrospinal fluid (CSF) neurofilament light (NfL) chain and CSF glial fibrillary acidic protein (GFAP) were elevated in SCA1. In longitudinal analysis, total brainstem and pontine volume change, inventory of non-ataxia signs (INAS) count, and SCA functional index (SCAFI) showed larger responsiveness compared to the Scale for Assessment and Rating of Ataxia (SARA). Longer disease duration, longer non-expanded CAG repeat length, and higher disease burden were associated with faster SARA increase after 1-year in the SCA1 group. Similarly, lower baseline brainstem, pontine, and cerebellar volumes, as well as lower levels of N-acetylaspartate and glutamate in the cerebellar white matter, were also associated with faster SARA increase. INTERPRETATION: Our results guide the selection of the most sensitive measures of disease progression in SCA1 and have identified features associated with accelerated progression that could inform the design of clinical trials. ANN NEUROL 2024.

2.
Ann Neurol ; 96(1): 46-60, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38624158

RESUMEN

OBJECTIVE: Recent evidence shows that during slow-wave sleep (SWS), the brain is cleared from potentially toxic metabolites, such as the amyloid-beta protein. Poor sleep or elevated cortisol levels can worsen amyloid-beta clearance, potentially leading to the formation of amyloid plaques, a neuropathological hallmark of Alzheimer disease. Here, we explored how nocturnal neural and endocrine activity affects amyloid-beta fluctuations in the peripheral blood. METHODS: We acquired simultaneous polysomnography and all-night blood sampling in 60 healthy volunteers aged 20-68 years. Nocturnal plasma concentrations of amyloid-beta-40, amyloid-beta-42, cortisol, and growth hormone were assessed every 20 minutes. Amyloid-beta fluctuations were modeled with sleep stages, (non)oscillatory power, and hormones as predictors while controlling for age and participant-specific random effects. RESULTS: Amyloid-beta-40 and amyloid-beta-42 levels correlated positively with growth hormone concentrations, SWS proportion, and slow-wave (0.3-4Hz) oscillatory and high-band (30-48Hz) nonoscillatory power, but negatively with cortisol concentrations and rapid eye movement sleep (REM) proportion measured 40-100 minutes previously (all t values > |3|, p values < 0.003). Older participants showed higher amyloid-beta-40 levels. INTERPRETATION: Slow-wave oscillations are associated with higher plasma amyloid-beta levels, whereas REM sleep is related to decreased amyloid-beta plasma levels, possibly representing changes in central amyloid-beta production or clearance. Strong associations between cortisol, growth hormone, and amyloid-beta presumably reflect the sleep-regulating role of the corresponding releasing hormones. A positive association between age and amyloid-beta-40 may indicate that peripheral clearance becomes less efficient with age. ANN NEUROL 2024;96:46-60.


Asunto(s)
Péptidos beta-Amiloides , Polisomnografía , Sueño REM , Sueño de Onda Lenta , Humanos , Persona de Mediana Edad , Péptidos beta-Amiloides/sangre , Péptidos beta-Amiloides/metabolismo , Adulto , Masculino , Anciano , Femenino , Sueño de Onda Lenta/fisiología , Adulto Joven , Sueño REM/fisiología , Hidrocortisona/sangre , Fragmentos de Péptidos/sangre
3.
Stroke ; 55(4): 954-962, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38445479

RESUMEN

BACKGROUND: The temporal ordering of biomarkers for cerebral amyloid angiopathy (CAA) is important for their use in trials and for the understanding of the pathological cascade of CAA. We investigated the presence and abnormality of the most common biomarkers in the largest (pre)symptomatic Dutch-type hereditary CAA (D-CAA) cohort to date. METHODS: We included cross-sectional data from participants with (pre)symptomatic D-CAA and controls without CAA. We investigated CAA-related cerebral small vessel disease markers on 3T-MRI, cerebrovascular reactivity with functional 7T-MRI (fMRI) and amyloid-ß40 and amyloid-ß42 levels in cerebrospinal fluid. We calculated frequencies and plotted biomarker abnormality according to age to form scatterplots. RESULTS: We included 68 participants with D-CAA (59% presymptomatic, mean age, 50 [range, 26-75] years; 53% women), 53 controls (mean age, 51 years; 42% women) for cerebrospinal fluid analysis and 36 controls (mean age, 53 years; 100% women) for fMRI analysis. Decreased cerebrospinal fluid amyloid-ß40 and amyloid-ß42 levels were the earliest biomarkers present: all D-CAA participants had lower levels of amyloid-ß40 and amyloid-ß42 compared with controls (youngest participant 30 years). Markers of nonhemorrhagic injury (>20 enlarged perivascular spaces in the centrum semiovale and white matter hyperintensities Fazekas score, ≥2, present in 83% [n=54]) and markers of impaired cerebrovascular reactivity (abnormal BOLD amplitude, time to peak and time to baseline, present in 56% [n=38]) were present from the age of 30 years. Finally, markers of hemorrhagic injury were present in 64% (n=41) and only appeared after the age of 41 years (first microbleeds and macrobleeds followed by cortical superficial siderosis). CONCLUSIONS: Our results suggest that amyloid biomarkers in cerebrospinal fluid are the first to become abnormal in CAA, followed by MRI biomarkers for cerebrovascular reactivity and nonhemorrhagic injury and lastly hemorrhagic injury. This temporal ordering probably reflects the pathological stages of CAA and should be taken into account when future therapeutic trials targeting specific stages are designed.


Asunto(s)
Angiopatía Amiloide Cerebral Familiar , Angiopatía Amiloide Cerebral , Humanos , Femenino , Persona de Mediana Edad , Adulto , Masculino , Angiopatía Amiloide Cerebral Familiar/diagnóstico por imagen , Estudios Transversales , Angiopatía Amiloide Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Hemorragia Cerebral , Biomarcadores
4.
J Neurochem ; 168(7): 1254-1264, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38362804

RESUMEN

Brain amyloid-ß (Aß) deposits are key pathological hallmarks of both cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD). Microvascular deposits in CAA mainly consist of the Aß40 peptide, whereas Aß42 is the predominant variant in parenchymal plaques in AD. The relevance in pathogenesis and diagnostic accuracy of various other Aß isoforms in CAA remain understudied. We aimed to investigate the biomarker potential of various Aß isoforms in cerebrospinal fluid (CSF) to differentiate CAA from AD pathology. We included 25 patients with probable CAA, 50 subjects with a CSF profile indicative of AD pathology (AD-like), and 23 age- and sex-matched controls. CSF levels of Aß1-34, Aß1-37, Aß1-38, Aß1-39, Aß1-40, and Aß1-42 were quantified by liquid chromatography mass spectrometry. Lower CSF levels of all six Aß peptides were observed in CAA patients compared with controls (p = 0.0005-0.03). Except for Aß1-42 (p = 1.0), all peptides were decreased in CAA compared with AD-like subjects (p = 0.007-0.03). Besides Aß1-42, none of the Aß peptides were decreased in AD-like subjects compared with controls. All Aß peptides combined differentiated CAA from AD-like subjects better (area under the curve [AUC] 0.84) than individual peptide levels (AUC 0.51-0.75). Without Aß1-42 in the model (since decreased Aß1-42 served as AD-like selection criterion), the AUC was 0.78 for distinguishing CAA from AD-like subjects. CAA patients and AD-like subjects showed distinct disease-specific CSF Aß profiles. Peptides shorter than Aß1-42 were decreased in CAA patients, but not AD-like subjects, which could suggest different pathological mechanisms between vascular and parenchymal Aß accumulation. This study supports the potential use of this panel of CSF Aß peptides to indicate presence of CAA pathology with high accuracy.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Angiopatía Amiloide Cerebral , Humanos , Angiopatía Amiloide Cerebral/líquido cefalorraquídeo , Angiopatía Amiloide Cerebral/diagnóstico , Péptidos beta-Amiloides/líquido cefalorraquídeo , Femenino , Masculino , Anciano , Biomarcadores/líquido cefalorraquídeo , Persona de Mediana Edad , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Fragmentos de Péptidos/líquido cefalorraquídeo , Anciano de 80 o más Años
5.
Ann Neurol ; 93(6): 1173-1186, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36707720

RESUMEN

OBJECTIVE: Vascular amyloid ß (Aß) accumulation is the hallmark of cerebral amyloid angiopathy (CAA). The composition of cerebrospinal fluid (CSF) of CAA patients may serve as a diagnostic biomarker of CAA. We studied the diagnostic potential of the peptides Aß38, Aß40, Aß42, and Aß43 in patients with sporadic CAA (sCAA), hereditary Dutch-type CAA (D-CAA), and Alzheimer disease (AD). METHODS: Aß peptides were quantified by immunoassays in a discovery group (26 patients with sCAA and 40 controls), a validation group (40 patients with sCAA, 40 patients with AD, and 37 controls), and a group of 22 patients with D-CAA and 54 controls. To determine the diagnostic accuracy, the area under the curve (AUC) was calculated using a receiver operating characteristic curve with 95% confidence interval (CI). RESULTS: We found decreased levels of all Aß peptides in sCAA patients and D-CAA patients compared to controls. The difference was most prominent for Aß42 (AUC of sCAA vs controls for discovery: 0.90, 95% CI = 0.82-0.99; for validation: 0.94, 95% CI = 0.89-0.99) and Aß43 (AUC of sCAA vs controls for discovery: 0.95, 95% CI = 0.88-1.00; for validation: 0.91, 95% CI = 0.83-1.0). All Aß peptides except Aß43 were also decreased in sCAA compared to AD (CSF Aß38: AUC = 0.82, 95% CI = 0.71-0.93; CSF Aß40: AUC = 0.88, 95% CI = 0.80-0.96; CSF Aß42: AUC = 0.79, 95% CI = 0.66-0.92). INTERPRETATION: A combined biomarker panel of CSF Aß38, Aß40, Aß42, and Aß43 has potential to differentiate sCAA from AD and controls, and D-CAA from controls. ANN NEUROL 2023;93:1173-1186.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral Familiar , Angiopatía Amiloide Cerebral , Humanos , Péptidos beta-Amiloides/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo
6.
J Inherit Metab Dis ; 2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37455357

RESUMEN

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare neurometabolic disorder caused by disruption of the gamma-aminobutyric acid (GABA) pathway. A more detailed understanding of its pathophysiology, beyond the accumulation of GABA and gamma-hydroxybutyric acid (GHB), will increase our understanding of the disease and may support novel therapy development. To this end, we compared biochemical body fluid profiles from SSADHD patients with controls using next-generation metabolic screening (NGMS). Targeted analysis of NGMS data from cerebrospinal fluid (CSF) showed a moderate increase of aspartic acid, glutaric acid, glycolic acid, 4-guanidinobutanoic acid, and 2-hydroxyglutaric acid, and prominent elevations of GHB and 4,5-dihydroxyhexanoic acid (4,5-DHHA) in SSADHD samples. Remarkably, the intensities of 4,5-DHHA and GHB showed a significant positive correlation in control CSF, but not in patient CSF. In an established zebrafish epilepsy model, 4,5-DHHA showed increased mobility that may reflect limited epileptogenesis. Using untargeted metabolomics, we identified 12 features in CSF with high biomarker potential. These had comparable increased fold changes as GHB and 4,5-DHHA. For 10 of these features, a similar increase was found in plasma, urine and/or mouse brain tissue for SSADHD compared to controls. One of these was identified as the novel biomarker 4,5-dihydroxyheptanoic acid. The intensities of selected features in plasma and urine of SSADHD patients positively correlated with the clinical severity score of epilepsy and psychiatric symptoms of those patients, and also showed a high mutual correlation. Our findings provide new insights into the (neuro)metabolic disturbances in SSADHD and give leads for further research concerning SSADHD pathophysiology.

7.
J Inherit Metab Dis ; 46(1): 66-75, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36088537

RESUMEN

We used next-generation metabolic screening to identify new biomarkers for improved diagnosis and pathophysiological understanding of glucose transporter type 1 deficiency syndrome (GLUT1DS), comparing metabolic cerebrospinal fluid (CSF) profiles from 12 patients to those of 116 controls. This confirmed decreased CSF glucose and lactate levels in patients with GLUT1DS and increased glutamine at group level. We identified three novel biomarkers significantly decreased in patients, namely gluconic + galactonic acid, xylose-α1-3-glucose, and xylose-α1-3-xylose-α1-3-glucose, of which the latter two have not previously been identified in body fluids. CSF concentrations of gluconic + galactonic acid may be reduced as these metabolites could serve as alternative substrates for the pentose phosphate pathway. Xylose-α1-3-glucose and xylose-α1-3-xylose-α1-3-glucose may originate from glycosylated proteins; their decreased levels are hypothetically the consequence of insufficient glucose, one of two substrates for O-glucosylation. Since many proteins are O-glucosylated, this deficiency may affect cellular processes and thus contribute to GLUT1DS pathophysiology. The novel CSF biomarkers have the potential to improve the biochemical diagnosis of GLUT1DS. Our findings imply that brain glucose deficiency in GLUT1DS may cause disruptions at the cellular level that go beyond energy metabolism, underlining the importance of developing treatment strategies that directly target cerebral glucose uptake.


Asunto(s)
Glucosa , Xilosa , Humanos , Glucosa/metabolismo , Biomarcadores , Encéfalo/metabolismo
8.
Cell Mol Life Sci ; 79(6): 305, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35593933

RESUMEN

Aromatic amino acid decarboxylase (AADC) deficiency is a rare monogenic disease, often fatal in the first decade, causing severe intellectual disability, movement disorders and autonomic dysfunction. It is due to mutations in the gene coding for the AADC enzyme responsible for the synthesis of dopamine and serotonin. Using whole exome sequencing, we have identified a novel homozygous c.989C > T (p.Pro330Leu) variant of AADC causing AADC deficiency. Pro330 is part of an essential structural and functional element: the flexible catalytic loop suggested to cover the active site as a lid and properly position the catalytic residues. Our investigations provide evidence that Pro330 concurs in the achievement of an optimal catalytic competence. Through a combination of bioinformatic approaches, dynamic light scattering measurements, limited proteolysis experiments, spectroscopic and in solution analyses, we demonstrate that the substitution of Pro330 with Leu, although not determining gross conformational changes, results in an enzymatic species that is highly affected in catalysis with a decarboxylase catalytic efficiency decreased by 674- and 194-fold for the two aromatic substrates. This defect does not lead to active site structural disassembling, nor to the inability to bind the pyridoxal 5'-phosphate (PLP) cofactor. The molecular basis for the pathogenic effect of this variant is rather due to a mispositioning of the catalytically competent external aldimine intermediate, as corroborated by spectroscopic analyses and pH dependence of the kinetic parameters. Altogether, we determined the structural basis for the severity of the manifestation of AADC deficiency in this patient and discussed the rationale for a precision therapy.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Descarboxilasas de Aminoácido-L-Aromático , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Descarboxilasas de Aminoácido-L-Aromático/deficiencia , Descarboxilasas de Aminoácido-L-Aromático/genética , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Catálisis , Dopamina/metabolismo , Humanos
9.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768261

RESUMEN

The glycosylation of proteins plays an important role in neurological development and disease. Glycoproteomic studies on cerebrospinal fluid (CSF) are a valuable tool to gain insight into brain glycosylation and its changes in disease. However, it is important to consider that most proteins in CSFs originate from the blood and enter the CSF across the blood-CSF barrier, thus not reflecting the glycosylation status of the brain. Here, we apply a glycoproteomics method to human CSF, focusing on differences between brain- and blood-derived proteins. To facilitate the analysis of the glycan site occupancy, we refrain from glycopeptide enrichment. In healthy individuals, we describe the presence of heterogeneous brain-type N-glycans on prostaglandin H2-D isomerase alongside the dominant plasma-type N-glycans for proteins such as transferrin or haptoglobin, showing the tissue specificity of protein glycosylation. We apply our methodology to patients diagnosed with various genetic glycosylation disorders who have neurological impairments. In patients with severe glycosylation alterations, we observe that heavily truncated glycans and a complete loss of glycans are more pronounced in brain-derived proteins. We speculate that a similar effect can be observed in other neurological diseases where a focus on brain-derived proteins in the CSF could be similarly beneficial to gain insight into disease-related changes.


Asunto(s)
Encéfalo , Transferrina , Humanos , Glicosilación , Transferrina/metabolismo , Encéfalo/metabolismo , Polisacáridos/metabolismo
10.
Eur J Immunol ; 51(6): 1494-1504, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33675038

RESUMEN

Dendritic cells (DCs) are key regulators of the immune system that shape T cell responses. Regulation of T cell induction by DCs may occur via the intracellular enzyme indoleamine 2,3-dioxygenase 1 (IDO), which catalyzes conversion of the essential amino acid tryptophan into kynurenine. Here, we examined the role of IDO in human peripheral blood plasmacytoid DCs (pDCs), and type 1 and type 2 conventional DCs (cDC1s and cDC2s). Our data demonstrate that under homeostatic conditions, IDO is selectively expressed by cDC1s. IFN-γ or TLR ligation further increases IDO expression in cDC1s and induces modest expression of the enzyme in cDC2s, but not pDCs. IDO expressed by conventional DCs is functionally active as measured by kynurenine production. Furthermore, IDO activity in TLR-stimulated cDC1s and cDC2s inhibits T cell proliferation in settings were DC-T cell cell-cell contact does not play a role. Selective inhibition of IDO1 with epacadostat, an inhibitor currently tested in clinical trials, rescued T cell proliferation without affecting DC maturation status or their ability to cross-present soluble antigen. Our findings provide new insights into the functional specialization of human blood DC subsets and suggest a possible synergistic enhancement of therapeutic efficacy by combining DC-based cancer vaccines with IDO inhibition.


Asunto(s)
Células Dendríticas/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Linfocitos T/inmunología , Vacunas contra el Cáncer , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Reactividad Cruzada , Regulación de la Expresión Génica , Homeostasis , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Activación de Linfocitos , Terapia Molecular Dirigida , Especificidad de Órganos , Oximas/farmacología , Fenotipo , Sulfonamidas/farmacología
11.
Neuropathol Appl Neurobiol ; 48(5): e12804, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35266166

RESUMEN

AIMS: The aim of this work is to study the association of urokinase plasminogen activator (uPA) with development and progression of cerebral amyloid angiopathy (CAA). MATERIALS AND METHODS: We studied the expression of uPA mRNA by quantitative polymerase chain reaction (qPCR) and co-localisation of uPA with amyloid-ß (Aß) using immunohistochemistry in the cerebral vasculature of rTg-DI rats compared with wild-type (WT) rats and in a sporadic CAA (sCAA) patient and control subject using immunohistochemistry. Cerebrospinal fluid (CSF) uPA levels were measured in rTg-DI and WT rats and in two separate cohorts of sCAA and Dutch-type hereditary CAA (D-CAA) patients and controls, using enzyme-linked immunosorbent assays (ELISA). RESULTS: The presence of uPA was clearly detected in the cerebral vasculature of rTg-DI rats and an sCAA patient but not in WT rats or a non-CAA human control. uPA expression was highly co-localised with microvascular Aß deposits. In rTg-DI rats, uPA mRNA expression was highly elevated at 3 months of age (coinciding with the emergence of microvascular Aß deposition) and sustained up to 12 months of age (with severe microvascular CAA deposition) compared with WT rats. CSF uPA levels were elevated in rTg-DI rats compared with WT rats (p = 0.03), and in sCAA patients compared with controls (after adjustment for age of subjects, p = 0.05 and p = 0.03). No differences in CSF uPA levels were found between asymptomatic and symptomatic D-CAA patients and their respective controls (after age-adjustment, p = 0.09 and p = 0.44). Increased cerebrovascular expression of uPA in CAA correlates with increased quantities of CSF uPA in rTg-DI rats and human CAA patients, suggesting that uPA could serve as a biomarker for CAA.


Asunto(s)
Angiopatía Amiloide Cerebral , Activador de Plasminógeno de Tipo Uroquinasa , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Angiopatía Amiloide Cerebral/metabolismo , Humanos , ARN Mensajero/metabolismo , Ratas , Roedores/genética , Roedores/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-35477892

RESUMEN

OBJECTIVE: Reactive astrogliosis is a hallmark of Alzheimer's disease (AD) and frontotemporal dementia (FTD) but differences between the diseases and time course are unclear. Here, we used serum levels of the astroglial marker glial fibrillary acidic protein (GFAP) to investigate differences in patients with AD dementia, mild cognitive impairment (MCI)-AD and behavioural variant FTD (bvFTD). METHODS: This multicentre study included serum samples from patients diagnosed with AD dementia (n=230), MCI-AD (n=111), bvFTD (n=140) and controls (n=129). A subgroup of patients with MCI-AD (n=32) was longitudinally followed-up for 3.9±2.6 years after sample collection. Serum levels of GFAP, neurofilament light chain (NfL) and pTau181 were measured by Simoa (Quanterix) and Ella (ProteinSimple). RESULTS: In total, samples from 610 individuals from four clinical centres were investigated in this study. Serum GFAP levels in AD dementia were increased (median 375 pg/mL, IQR 276-505 pg/mL) compared with controls (167 pg/mL, IQR 108-234 pg/mL) and bvFTD (190 pg/mL, IQR 134-298 pg/mL, p<0.001). GFAP was already increased in the early disease phase (MCI-AD, 300 pg/mL, IQR 232-433 pg/mL, p<0.001) and was higher in patients with MCI-AD who developed dementia during follow-up (360 pg/mL, IQR 253-414 pg/mL vs 215 pg/mL, IQR 111-266 pg/mL, p<0.01, area under the curve (AUC)=0.77). Diagnostic performance of serum GFAP for AD (AUC=0.84, sensitivity 98%, specificity 60%, likelihood ratio 2.5) was comparable to serum pTau181 (AUC=0.89, sensitivity 80%, specificity 87%, likelihood ratio 6.0) but superior to serum NfL (AUC=0.71, sensitivity 92%, specificity 49%, likelihood ratio 1.8). CONCLUSIONS: Our data indicate a different type of reactive astrogliosis in AD and bvFTD and support serum GFAP as biomarker for differential diagnosis and prediction of MCI-to-dementia conversion.

13.
PLoS Comput Biol ; 17(3): e1008786, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33661919

RESUMEN

Morphine is a widely used opioid analgesic, which shows large differences in clinical response in children, even when aiming for equivalent plasma drug concentrations. Age-dependent brain disposition of morphine could contribute to this variability, as developmental increase in blood-brain barrier (BBB) P-glycoprotein (Pgp) expression has been reported. In addition, age-related pharmacodynamics might also explain the variability in effect. To assess the influence of these processes on morphine effectiveness, a multi-compartment brain physiologically based pharmacokinetic/pharmacodynamic (PB-PK/PD) model was developed in R (Version 3.6.2). Active Pgp-mediated morphine transport was measured in MDCKII-Pgp cells grown on transwell filters and translated by an in vitro-in vivo extrapolation approach, which included developmental Pgp expression. Passive BBB permeability of morphine and its active metabolite morphine-6-glucuronide (M6G) and their pharmacodynamic parameters were derived from experiments reported in literature. Model simulations after single dose morphine were compared with measured and published concentrations of morphine and M6G in plasma, brain extracellular fluid (ECF) and cerebrospinal fluid (CSF), as well as published drug responses in children (1 day- 16 years) and adults. Visual predictive checks indicated acceptable overlays between simulated and measured morphine and M6G concentration-time profiles and prediction errors were between 1 and -1. Incorporation of active Pgp-mediated BBB transport into the PB-PK/PD model resulted in a 1.3-fold reduced brain exposure in adults, indicating only a modest contribution on brain disposition. Analgesic effect-time profiles could be described reasonably well for older children and adults, but were largely underpredicted for neonates. In summary, an age-appropriate morphine PB-PK/PD model was developed for the prediction of brain pharmacokinetics and analgesic effects. In the neonatal population, pharmacodynamic characteristics, but not brain drug disposition, appear to be altered compared to adults and older children, which may explain the reported differences in analgesic effect.


Asunto(s)
Analgésicos Opioides , Encéfalo/metabolismo , Modelos Biológicos , Derivados de la Morfina , Morfina , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Adulto , Factores de Edad , Analgesia , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/sangre , Analgésicos Opioides/farmacocinética , Barrera Hematoencefálica/metabolismo , Niño , Preescolar , Biología Computacional , Femenino , Humanos , Recién Nacido , Masculino , Morfina/administración & dosificación , Morfina/sangre , Morfina/farmacocinética , Derivados de la Morfina/administración & dosificación , Derivados de la Morfina/sangre , Derivados de la Morfina/farmacocinética
14.
Eur J Neurol ; 29(8): 2431-2438, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35524506

RESUMEN

BACKGROUND AND PURPOSE: Cerebrospinal fluid (CSF) real-time quaking-induced conversion (RT-QuIC) has a high degree of sensitivity and specificity for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) and this has led to its being included in revised European CJD Surveillance Network diagnostic criteria for sCJD. As CSF RT-QuIC becomes more widely established, it is crucial that the analytical performance of individual laboratories is consistent. The aim of this ring-trial was to ascertain the degree of concordance between European countries undertaking CSF RT-QuIC. METHODS: Ten identical CSF samples, seven from probable or neuropathologically confirmed sCJD and three from non-CJD cases, were sent to 13 laboratories from 11 countries for RT-QuIC analysis. A range of instrumentation and different recombinant prion protein substrates were used. Each laboratory analysed the CSF samples blinded to the diagnosis and reported the results as positive or negative. RESULTS: All 13 laboratories correctly identified five of the seven sCJD cases and the remaining two sCJD cases were identified by 92% of laboratories. Of the two sCJD cases that were not identified by all laboratories, one had a disease duration >26 months with a negative 14-3-3, whilst the remaining case had a 4-month disease duration and a positive 14-3-3. A single false positive CSF RT-QuIC result was observed in this study. CONCLUSIONS: This study shows that CSF RT-QuIC demonstrates an excellent concordance between centres, even when using a variety of instrumentation, recombinant prion protein substrates and CSF volumes. The adoption of CSF RT-QuIC by all CJD surveillance centres is recommended.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Priones , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquídeo , Síndrome de Creutzfeldt-Jakob/diagnóstico , Humanos , Proteínas Priónicas , Priones/líquido cefalorraquídeo , Proteínas Recombinantes , Sensibilidad y Especificidad
15.
Clin Chem Lab Med ; 60(2): 207-219, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34773730

RESUMEN

OBJECTIVES: The core cerebrospinal fluid (CSF) biomarkers; total tau (tTau), phospho-tau (pTau), amyloid ß 1-42 (Aß 1-42), and the Aß 1-42/Aß 1-40 ratio have transformed Alzheimer's disease (AD) research and are today increasingly used in clinical routine laboratories as diagnostic tools. Fully automated immunoassay instruments with ready-to-use assay kits and calibrators has simplified their analysis and improved reproducibility of measurements. We evaluated the analytical performance of the fully automated immunoassay instrument LUMIPULSE G (Fujirebio) for measurement of the four core AD CSF biomarkers and determined cutpoints for AD diagnosis. METHODS: Comparison of the LUMIPULSE G assays was performed with the established INNOTEST ELISAs (Fujirebio) for hTau Ag, pTau 181, ß-amyloid 1-42, and with V-PLEX Plus Aß Peptide Panel 1 (6E10) (Meso Scale Discovery) for Aß 1-42/Aß 1-40, as well as with a LC-MS reference method for Aß 1-42. Intra- and inter-laboratory reproducibility was evaluated for all assays. Clinical cutpoints for Aß 1-42, tTau, and pTau was determined by analysis of three cohorts of clinically diagnosed patients, comprising 651 CSF samples. For the Aß 1-42/Aß 1-40 ratio, the cutpoint was determined by mixture model analysis of 2,782 CSF samples. RESULTS: The LUMIPULSE G assays showed strong correlation to all other immunoassays (r>0.93 for all assays). The repeatability (intra-laboratory) CVs ranged between 2.0 and 5.6%, with the highest variation observed for ß-amyloid 1-40. The reproducibility (inter-laboratory) CVs ranged between 2.1 and 6.5%, with the highest variation observed for ß-amyloid 1-42. The clinical cutpoints for AD were determined to be 409 ng/L for total tau, 50.2 ng/L for pTau 181, 526 ng/L for ß-amyloid 1-42, and 0.072 for the Aß 1-42/Aß 1-40 ratio. CONCLUSIONS: Our results suggest that the LUMIPULSE G assays for the CSF AD biomarkers are fit for purpose in clinical laboratory practice. Further, they corroborate earlier presented reference limits for the biomarkers.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Humanos , Inmunoensayo/métodos , Fragmentos de Péptidos/líquido cefalorraquídeo , Reproducibilidad de los Resultados , Proteínas tau/líquido cefalorraquídeo
16.
Alzheimers Dement ; 18(1): 10-28, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34057813

RESUMEN

Reported prevalence estimates of sporadic cerebral amyloid angiopathy (CAA) vary widely. CAA is associated with cognitive dysfunction and intracerebral hemorrhage, and linked to immunotherapy-related side-effects in Alzheimer's disease (AD). Given ongoing efforts to develop AD immunotherapy, accurate estimates of CAA prevalence are important. CAA can be diagnosed neuropathologically or during life using MRI markers including strictly lobar microbleeds. In this meta-analysis of 170 studies including over 73,000 subjects, we show that in patients with AD, CAA prevalence based on pathology (48%) is twice that based on presence of strictly lobar cerebral microbleeds (22%); in the general population this difference is three-fold (23% vs 7%). Both methods yield similar estimated prevalences of CAA in cognitively normal elderly (5% to 7%), in patients with intracerebral hemorrhage (19% to 24%), and in patients with lobar intracerebral hemorrhage (50% to 57%). However, we observed large heterogeneity among neuropathology and MRI protocols, which calls for standardized assessment and reporting of CAA.


Asunto(s)
Angiopatía Amiloide Cerebral/epidemiología , Hemorragia Cerebral/epidemiología , Inmunoterapia/efectos adversos , Neuropatología , Enfermedad de Alzheimer/tratamiento farmacológico , Angiopatía Amiloide Cerebral/patología , Disfunción Cognitiva/tratamiento farmacológico , Humanos , Imagen por Resonancia Magnética/normas , Prevalencia
17.
Alzheimers Dement ; 18(10): 1788-1796, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34874603

RESUMEN

BACKGROUND: Cerebrospinal fluid (CSF) platelet-derived growth factor receptor-ß (PDGFRß) has been proposed as a biomarker of blood-brain barrier (BBB) breakdown. We studied PDGFRß levels as a biomarker for cerebral amyloid angiopathy (CAA), amnestic mild cognitive impairment (aMCI), or Alzheimer's disease (AD). METHODS: CSF PDGFRß levels were quantified by enzyme-linked immunosorbent assay in patients with CAA, patients with aMCI/AD, and in matched controls. In aMCI/AD we evaluated CSF PDGFRß both by clinical phenotype and by using the AT(N) biomarker classification system defined by CSF amyloid (A), tau (T), and neurodegeneration (N) biomarkers. RESULTS: PDGFRß levels were similar in CAA patients and controls (P = .78) and in aMCI/AD clinical phenotype and controls (P = .91). aMCI/AD patients with an AD+ biomarker profile (A+T+[N+]) had increased PDGFRß levels compared to (A-T-[N-]) controls (P = .006). CONCLUSION: Our findings indicate that PDGFRß levels are associated with an AD+ biomarker profile but are not a suitable biomarker for CAA or aMCI/AD clinical syndrome.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Angiopatía Amiloide Cerebral/líquido cefalorraquídeo , Disfunción Cognitiva/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Proteínas tau/líquido cefalorraquídeo
18.
Mov Disord ; 36(3): 690-703, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33152132

RESUMEN

BACKGROUND: Genetic defects of monoamine neurotransmitters are rare neurological diseases amenable to treatment with variable response. They are major causes of early parkinsonism and other spectrum of movement disorders including dopa-responsive dystonia. OBJECTIVES: The objective of this study was to conduct proteomic studies in cerebrospinal fluid (CSF) samples of patients with monoamine defects to detect biomarkers involved in pathophysiology, clinical phenotypes, and treatment response. METHODS: A total of 90 patients from diverse centers of the International Working Group on Neurotransmitter Related Disorders were included in the study (37 untreated before CSF collection, 48 treated and 5 unknown at the collection time). Clinical and molecular metadata were related to the protein abundances in the CSF. RESULTS: Concentrations of 4 proteins were significantly altered, detected by mass spectrometry, and confirmed by immunoassays. First, decreased levels of apolipoprotein D were found in severe cases of aromatic L-amino acid decarboxylase deficiency. Second, low levels of apolipoprotein H were observed in patients with the severe phenotype of tyrosine hydroxylase deficiency, whereas increased concentrations of oligodendrocyte myelin glycoprotein were found in the same subset of patients with tyrosine hydroxylase deficiency. Third, decreased levels of collagen6A3 were observed in treated patients with tetrahydrobiopterin deficiency. CONCLUSION: This study with the largest cohort of patients with monoamine defects studied so far reports the proteomic characterization of CSF and identifies 4 novel biomarkers that bring new insights into the consequences of early dopaminergic deprivation in the developing brain. They open new possibilities to understand their role in the pathophysiology of these disorders, and they may serve as potential predictors of disease severity and therapies. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Trastornos Distónicos , Biomarcadores , Humanos , Proteómica , Índice de Severidad de la Enfermedad
19.
Mov Disord ; 36(11): 2675-2681, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34397117

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 3 is a rare neurodegenerative disease caused by a CAG repeat expansion in the ataxin-3 gene. Although no curative therapy is yet available, preclinical gene-silencing approaches to reduce polyglutamine (polyQ) toxicity demonstrate promising results. In view of upcoming clinical trials, quantitative and easily accessible molecular markers are of critical importance as pharmacodynamic and particularly as target engagement markers. OBJECTIVE: We aimed at developing an ultrasensitive immunoassay to measure specifically polyQ-expanded ataxin-3 in plasma and cerebrospinal fluid (CSF). METHODS: Using the novel single molecule counting ataxin-3 immunoassay, we analyzed cross-sectional and longitudinal patient biomaterials. RESULTS: Statistical analyses revealed a correlation with clinical parameters and a stability of polyQ-expanded ataxin-3 during conversion from the pre-ataxic to the ataxic phases. CONCLUSIONS: The novel immunoassay is able to quantify polyQ-expanded ataxin-3 in plasma and CSF, whereas ataxin-3 levels in plasma correlate with disease severity. Longitudinal analyses demonstrated a high stability of polyQ-expanded ataxin-3 over a short period. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Ataxina-3/genética , Estudios Transversales , Humanos , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Péptidos
20.
J Inherit Metab Dis ; 44(3): 554-565, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33034372

RESUMEN

Dopamine beta hydroxylase (DBH) deficiency is an extremely rare autosomal recessive disorder with severe orthostatic hypotension, that can be treated with L-threo-3,4-dihydroxyphenylserine (L-DOPS). We aimed to summarize clinical, biochemical, and genetic data of all world-wide reported patients with DBH-deficiency, and to present detailed new data on long-term follow-up of a relatively large Dutch cohort. We retrospectively describe 10 patients from a Dutch cohort and 15 additional patients from the literature. We identified 25 patients (15 females) from 20 families. Ten patients were diagnosed in the Netherlands. Duration of follow-up of Dutch patients ranged from 1 to 21 years (median 13 years). All patients had severe orthostatic hypotension. Severely decreased or absent (nor)epinephrine, and increased dopamine plasma concentrations were found in 24/25 patients. Impaired kidney function and anemia were present in all Dutch patients, hypomagnesaemia in 5 out of 10. Clinically, all patients responded very well to L-DOPS, with marked reduction of orthostatic complaints. However, orthostatic hypotension remained present, and kidney function, anemia, and hypomagnesaemia only partially improved. Plasma norepinephrine increased and became detectable, while epinephrine remained undetectable in most patients. We confirm the core clinical characteristics of DBH-deficiency and the pathognomonic profile of catecholamines in body fluids. Impaired renal function, anemia, and hypomagnesaemia can be part of the clinical presentation. The subjective response to L-DOPS treatment is excellent and sustained, although the neurotransmitter profile in plasma does not normalize completely. Furthermore, orthostatic hypotension as well as renal function, anemia, and hypomagnesaemia improve only partially.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo/fisiopatología , Dopamina beta-Hidroxilasa/deficiencia , Droxidopa/uso terapéutico , Hipotensión Ortostática/tratamiento farmacológico , Norepinefrina/deficiencia , Presión Sanguínea/efectos de los fármacos , Dopamina/sangre , Humanos , Norepinefrina/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA