Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Metab ; 36(2): 393-407.e7, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38242133

RESUMEN

Food is a powerful natural reinforcer that guides feeding decisions. The vagus nerve conveys internal sensory information from the gut to the brain about nutritional value; however, the cellular and molecular basis of macronutrient-specific reward circuits is poorly understood. Here, we monitor in vivo calcium dynamics to provide direct evidence of independent vagal sensing pathways for the detection of dietary fats and sugars. Using activity-dependent genetic capture of vagal neurons activated in response to gut infusions of nutrients, we demonstrate the existence of separate gut-brain circuits for fat and sugar sensing that are necessary and sufficient for nutrient-specific reinforcement. Even when controlling for calories, combined activation of fat and sugar circuits increases nigrostriatal dopamine release and overeating compared with fat or sugar alone. This work provides new insights into the complex sensory circuitry that mediates motivated behavior and suggests that a subconscious internal drive to consume obesogenic diets (e.g., those high in both fat and sugar) may impede conscious dieting efforts.


Asunto(s)
Carbohidratos , Azúcares , Humanos , Azúcares/metabolismo , Encéfalo/metabolismo , Dieta , Hiperfagia/metabolismo
2.
bioRxiv ; 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37214924

RESUMEN

We investigated the lateralization of gut-innervating vagal sensory neurons and their roles in feeding behavior. Using genetic, anatomical, and behavioral analyses, we discovered a subset of highly lateralized vagal sensory neurons with distinct sensory responses to intestinal stimuli. Our results demonstrated that left vagal sensory neurons (LNG) are crucial for distension-induced satiety, while right vagal sensory neurons (RNG) mediate preference for nutritive foods. Furthermore, these lateralized neurons engage different central circuits, with LNG neurons recruiting brain regions associated with energy balance and RNG neurons activating areas related to salience, memory, and reward. Altogether, our findings unveil the diverse roles of asymmetrical gut-vagal-brain circuits in feeding behavior, offering new insights for potential therapeutic interventions targeting vagal nerve stimulation in metabolic and neuropsychiatric diseases.

3.
Peptides ; 140: 170534, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33757831

RESUMEN

Cocaine- and amphetamine-related transcript (CART) is a neuropeptide first discovered in the striatum of the rat brain. Later, the genetic sequence and function of CART peptide (CARTp) was found to be conserved among multiple mammalian species. Over the 25 years, since its discovery, CART mRNA (Cartpt) expression has been reported widely throughout the central and peripheral nervous systems underscoring its role in diverse physiological functions. Here, we review the localization and function of CARTp as it relates to energy homeostasis. We summarize the expression changes of central and peripheral Cartpt in response to metabolic states and make use of available large data sets to gain additional insights into the anatomy of the Cartpt expressing vagal neurons and their expression patterns in the gut. Furthermore, we provide an overview of the role of CARTp as an anorexigenic signal and its effect on energy expenditure and body weight control with insights from both pharmacological and transgenic animal studies. Subsequently, we discuss the role of CARTp in the pathophysiology of obesity and review important new developments towards identifying a candidate receptor for CARTp signalling. Altogether, the field of CARTp research has made rapid and substantial progress recently, and we review the case for considering CARTp as a potential therapeutic target for stemming the obesity epidemic.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Péptidos/metabolismo , Nervio Vago/metabolismo , Animales , Metabolismo Energético , Homeostasis , Humanos
4.
Nat Metab ; 3(2): 258-273, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33589843

RESUMEN

The anorexigenic peptide glucagon-like peptide-1 (GLP-1) is secreted from gut enteroendocrine cells and brain preproglucagon (PPG) neurons, which, respectively, define the peripheral and central GLP-1 systems. PPG neurons in the nucleus tractus solitarii (NTS) are widely assumed to link the peripheral and central GLP-1 systems in a unified gut-brain satiation circuit. However, direct evidence for this hypothesis is lacking, and the necessary circuitry remains to be demonstrated. Here we show that PPGNTS neurons encode satiation in mice, consistent with vagal signalling of gastrointestinal distension. However, PPGNTS neurons predominantly receive vagal input from oxytocin-receptor-expressing vagal neurons, rather than those expressing GLP-1 receptors. PPGNTS neurons are not necessary for eating suppression by GLP-1 receptor agonists, and concurrent PPGNTS neuron activation suppresses eating more potently than semaglutide alone. We conclude that central and peripheral GLP-1 systems suppress eating via independent gut-brain circuits, providing a rationale for pharmacological activation of PPGNTS neurons in combination with GLP-1 receptor agonists as an obesity treatment strategy.


Asunto(s)
Sistema Nervioso Central/fisiología , Péptido 1 Similar al Glucagón/fisiología , Sistema Nervioso Periférico/fisiología , Respuesta de Saciedad/fisiología , Animales , Ingestión de Alimentos , Femenino , Tracto Gastrointestinal/inervación , Tracto Gastrointestinal/fisiología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Péptidos Similares al Glucagón/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Proglucagón/metabolismo , Receptores de Oxitocina/metabolismo , Nervio Vago/fisiología
5.
Exp Neurol ; 325: 113159, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31843492

RESUMEN

Parkinson's disease (PD) is a debilitating condition resulting in motor and non-motor symptoms affecting approximately 10 million people worldwide. Currently, there are no pharmacological treatments that can cure the condition or effectively halt its progression. The focus of PD research has been primarily on the neurobiological basis and consequences of dopamine (DA) neuron degeneration given that the loss of DA neurons projecting from the substantia nigra to the dorsal striatum results in the development of cardinal PD motor symptoms. Alternatively, gastrointestinal dysfunction is well recognized in PD patients, and often occurs prior to the development of motor symptoms. The gut microbiota, which contains thousands of bacterial species, play important roles in intestinal barrier integrity and function, metabolism, immunity and brain function. Pre-clinical and clinical studies suggest an important link between alterations in the composition of the gut microbiota and psychiatric and neurological conditions, including PD. Several reports have documented gut dysbiosis and alterations in the composition of the gut microbiota in PD patients. Therefore, the goal of this study was to explore the contribution of the gut microbiota to the behavioral and neurochemical alterations in a rodent toxin model of DA depletion that reproduces the motor symptoms associated with PD. We observed that chronic treatment of adult rats with non-absorbable antibiotics ameliorates the neurotoxicity of 6-hydroxydopamine (6-OHDA) in a unilateral lesion model. Specifically, immunohistochemistry against the dopaminergic neuron marker tyrosine hydroxylase (TH) showed an attenuation of the degree of 6-OHDA-induced dopaminergic neuron loss in antibiotic treated animals compared to control animals. In addition, we observed a reduction in the expression of pro-inflammatory markers in the striatum of antibiotic-treated animals. The degree of motor dysfunction after 6-OHDA was also attenuated in antibiotic-treated animals as measured by paw-rearing measurements in the cylinder test, forepaw stepping test, and ipsilateral rotations observed in the amphetamine-induced rotation test. These results implicate the gut microbiota as a potential contributor to pathology in the development of PD. Further studies are necessary to understand the specific mechanisms involved in transducing alterations in the gut microbiota to changes in dopaminergic neuron loss and motor dysfunction.


Asunto(s)
Antibacterianos/farmacología , Neuronas Dopaminérgicas/patología , Microbioma Gastrointestinal/efectos de los fármacos , Degeneración Nerviosa/patología , Trastornos Parkinsonianos/patología , Animales , Bacitracina/farmacología , Masculino , Actividad Motora/efectos de los fármacos , Natamicina/farmacología , Neomicina/farmacología , Degeneración Nerviosa/etiología , Trastornos Parkinsonianos/complicaciones , Trastornos Parkinsonianos/microbiología , Ratas , Ratas Sprague-Dawley , Vancomicina/farmacología
6.
Cell Rep ; 30(6): 2028-2039.e4, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32049029

RESUMEN

The vagus nerve conveys gastrointestinal cues to the brain to control eating behavior. In obesity, vagally mediated gut-brain signaling is disrupted. Here, we show that the cocaine- and amphetamine-regulated transcript (CART) is a neuropeptide synthesized proportional to the food consumed in vagal afferent neurons (VANs) of chow-fed rats. CART injection into the nucleus tractus solitarii (NTS), the site of vagal afferent central termination, reduces food intake. Conversely, blocking endogenous CART action in the NTS increases food intake in chow-fed rats, and this requires intact VANs. Viral-mediated Cartpt knockdown in VANs increases weight gain and daily food intake via larger meals and faster ingestion rate. In obese rats fed a high-fat, high-sugar diet, meal-induced CART synthesis in VANs is blunted and CART antibody fails to increase food intake. However, CART injection into the NTS retains its anorexigenic effect in obese rats. Restoring disrupted VAN CART signaling in obesity could be a promising therapeutic approach.


Asunto(s)
Hiperfagia/genética , Proteínas del Tejido Nervioso/metabolismo , Nervio Vago/efectos de los fármacos , Aumento de Peso/genética , Animales , Humanos , Masculino , Ratas
8.
Behav Brain Res ; 324: 130-137, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28212942

RESUMEN

The prelimbic area (PL) of the medial Prefrontal cortex (mPFC) is involved in the acquisition and expression of conditioned and innate fear. Both types of fear share several neuronal pathways. It has been documented that dopamine (DA) plays an important role in the regulation of aversive memories in the mPFC. The exposure to an aversive stimulus, such as the smell of a predator odor or the exposure to footshock stress is accompanied by an increase in mPFC DA release. Evidence suggests that the type 4 dopaminergic receptor (D4R) is the molecular target through which DA modulates fear expression. In fact, the mPFC is the brain region with the highest expression of D4R; however, the role of D4R in the expression of innate fear has not been fully elucidated. Therefore, the principal objective of this work was to evaluate the participation of mPFC D4R in the expression of innate fear. Rats were exposed to the elevated plus-maze (EPM) and to the cat odor paradigm after the intra PL injection of L-745,870, selective D4R antagonist, to measure the expression of fear-related behaviors. Intra PL injection of L-745,870 increased the time spent in the EPM open arms and decreased freezing behavior in the cat odor paradigm. Our results also showed that D4R is expressed in GABAergic and pyramidal neurons in the PL region of PFC. Thus, D4R antagonism in the PL decreases the expression of innate fear-behavior indicating that the activation of D4R in the PL is necessary for the expression of innate fear-behavior.


Asunto(s)
Miedo/fisiología , Corteza Prefrontal/fisiología , Receptores de Dopamina D4/fisiología , Animales , Ansiedad/fisiopatología , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Antagonistas de Dopamina/administración & dosificación , Miedo/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Masculino , Odorantes , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/metabolismo , Piridinas/administración & dosificación , Pirroles/administración & dosificación , Ratas Sprague-Dawley , Receptores de Dopamina D4/antagonistas & inhibidores , Receptores de Dopamina D4/metabolismo
9.
Int. j. morphol ; 29(4): 1351-1356, dic. 2011. ilus
Artículo en Español | LILACS | ID: lil-627014

RESUMEN

Las enfermedades cardiovasculares son la principal causa de muerte a nivel mundial. Entre ellas tienen gran relevancia las de tipo isquémicas, en donde el desarrollo de placas ateroscleróticas es el proceso fisiopatológico central. El estudio de la aterosclerosis es fundamental para comprender como se inicia este proceso patológico y los factores que influyen en su desarrollo. Distintas metodologías de laboratorio, entre otras la inmunohistoquímica, permiten reconocer las células y moléculas que participan en el proceso ateromatoso y que van interactuando según la progresión de la lesión. Un marcador de disfunción endotelial es la mayor expresión de la molécula de adhesión intercelular ICAM-1. En este trabajo se realizó la estandarización de inmunohistoquímica para la molécula de adhesión ICAM-1, y se estudió su expresión en arterias humanas sanas y con placa ateromatosa. En las muestras de arterias humanas con patología aterosclerótica, la expresión de ICAM-1 se observó aumentada, pero fue de difícil reconocimiento. Esto principalmente porque el tejido empleado como control en la estandarización fue una amígdala con hiperplasia y proceso inflamatorio que aumenta notablemente la expresión de ICAM-1. La implementación del método de inmunohistoquímica para ICAM-1 en arterias humanas permitirá conocer estados de disfunción endotelial y el desarrollo futuro del diseño e implementación de métodos de diagnóstico en aquellos procesos ateroclerótico en estado incipiente.


Cardiovascular diseases (CVD) are the leading cause of death in the world. Among them the ischemic type are of great importance, where the development of atherosclerotic plaques is the central pathophysiological process. The study of atherosclerosis is critical to understand how this disease process begins and factors influencing its development. Various laboratory methods, including immunohistochemistry, allow the recognition of cells and molecules involved in the atheromatous process that are interacting according to the progression of the lesion. A marker of endothelial dysfunction is the increased expression of intercellular adhesion molecule ICAM-1. In this paper, an immunohistochemistry method was standardized for the adhesion molecule ICAM-1, and its expression was studied in healthy human arteries with atheromatous plaque. In samples of human arteries with atherosclerotic disease, the expression of ICAM-1 was observed to be increased, but was hardly recognizable. This mainly because the tissue used as a control for standardization was a tonsil with an inflammatory process and hyperplasia, which significantly increases the expression of ICAM-1. The implementation of the immunohistochemistry method for ICAM-1 in human arteries will reveal endothelial dysfunction states that will enable a future design and implementation of methods of diagnosis in atherosclerotic processes in the early stages.


Asunto(s)
Humanos , Arterias/metabolismo , Aterosclerosis/metabolismo , Endotelio Vascular/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Inmunohistoquímica , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA