RESUMEN
The use of anthracycline derivatives was approved for the treatment of a broad spectrum of human tumors (i.e., breast cancer). The need to test these drugs on cancer models has pushed the basic research to apply many types of in vitro assays, and, among them, the study of anthracycline-induced apoptosis was mainly based on the application of flow cytometry protocols. However, the chemical structure of anthracycline derivatives gives them a strong autofluorescence effect that must be considered when flow cytometry is used. Unfortunately, the guidelines on the analysis of anthracycline effects through flow cytometry are lacking. Therefore, in this study, we optimized the flow cytometry detection of doxorubicin and epirubicin-treated breast cancer cells. Their autofluorescence was assessed both by using conventional and imaging flow cytometry; we found that all the channels excited by the 488 nm laser were affected. Anthracycline-induced apoptosis was then measured via flow cytometry using the optimized setting. Consequently, we established a set of recommendations that enable the development of optimized flow cytometry settings when the in vitro assays of anthracycline effects are analyzed, with the final aim to reveal a new perspective on the use of those in vitro tests for the further implementation of precision medicine strategies in cancer.
RESUMEN
BACKGROUND: Current approaches aimed at inducing immunogenic cell death (ICD) to incite an immune response against cancer neoantigens are based on the use of chemotherapeutics and other agents. Results are hampered by issues of efficacy, combinatorial approaches, dosing and toxicity. Here, we adopted a strategy based on the use of an immunomolecule that overcomes pharmachemical limitations. METHODS: Cytofluorometry, electron microscopy, RT-PCR, western blotting, apotome immunofluorescence, MLR and xenografts. RESULTS: We report that an ICD process can be activated without the use of pharmacological compounds. We show that in Kras-mut/TP53-mut colorectal cancer cells the 15 kDa ßGBP cytokine, a T cell effector with onco-suppressor properties and a potential role in cancer immunosurveillance, induces key canonical events required for ICD induction. We document ER stress, autophagy that extends from cancer cells to the corresponding xenograft tumours, CRT cell surface shifting, ATP release and evidence of dendritic cell activation, a process required for priming cytotoxic T cells into a specific anticancer immunogenic response. CONCLUSIONS: Our findings provide experimental evidence for a rationale to explore a strategy based on the use of an immunomolecule that as a single agent couples oncosuppression with the activation of procedures necessary for the induction of long term response to cancer.
Asunto(s)
Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Proteínas Proto-Oncogénicas p21(ras)/inmunología , Adenosina Trifosfato/inmunología , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Muerte Celular Autofágica/efectos de los fármacos , Muerte Celular Autofágica/inmunología , Calreticulina/inmunología , Calreticulina/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Muerte Celular/inmunología , Línea Celular Tumoral , Células Dendríticas/inmunología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/inmunología , Femenino , Galectinas/farmacología , Xenoinjertos , Humanos , Vigilancia Inmunológica , Ratones , Ratones Desnudos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacosRESUMEN
PURPOSE: The role of non-genetic factors as modifiers of TP53-related hereditary breast cancer (BC) risk is debated. In this regard, little is known about the impact of germline TP53 mutations on BC in sub-Saharan Africa, where the disease often presents in non-contraceptive multiparous premenopausal women with extended history of breastfeeding. Herein, we report the germline TP53 mutations found in a series of 92 Sudanese premenopausal BC patients characterized for reproductive history. METHODS: The entire TP53 coding sequence, including intron-exon boundaries and UTRs, was analyzed via DHPLC and direct sequencing, and the association of TP53 genotypes with BC risk and with individual lifetime exposures to reproductive factors was investigated with statistical tools. RESULTS: The germline TP53 mutation spectrum comprised 20 variants, 15 in the non-coding and 5 in the coding region. The latter included a deleterious missense mutation, c.817C>T (p.Arg273Cys), in a unique patient, and the common and functionally relevant coding polymorphism at amino acid 72 [Pro72Arg (rs1042522)]. The non-coding mutations included c.919+1G>A, a known deleterious splice site mutation, also in a unique patient. Notably, the 2 carriers of deleterious TP53 mutations clustered in the subset of cases with stronger reproductive history relative to childbearing age. When analyzed in comparison to population controls, the codon 72 polymorphism did not reveal associations with BC. CONCLUSIONS: Our study suggests that the codon 72 Arg>Pro polymorphism is not implicated in premenopausal BC susceptibility, whereas multiparity and breastfeeding might be BC risk factors for carriers of deleterious TP53 mutations.
Asunto(s)
Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad , Reproducción/genética , Proteína p53 Supresora de Tumor/genética , Adulto , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/fisiopatología , Femenino , Pruebas Genéticas , Genotipo , Mutación de Línea Germinal/genética , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Paridad/genética , Embarazo , Premenopausia/genética , Premenopausia/fisiología , Reproducción/fisiología , Historia Reproductiva , Sudán/epidemiologíaRESUMEN
Tumours can be viewed as aberrant tissues or organs sustained by tumorigenic stem-like cells that engage into dysregulated histo/organogenetic processes. Paragangliomas, prototypical organoid tumours constituted by dysmorphic variants of the vascular and neural tissues found in normal paraganglia, provide a model to test this hypothesis. To understand the origin of paragangliomas, we built a biobank comprising 77 cases, 18 primary cultures, 4 derived cell lines, 80 patient-derived xenografts and 11 cell-derived xenografts. We comparatively investigated these unique complementary materials using morphofunctional, ultrastructural and flow cytometric assays accompanied by microRNA studies. We found that paragangliomas contain stem-like cells with hybrid mesenchymal/vasculoneural phenotype, stabilized and expanded in the derived cultures. The viability and growth of such cultures depended on the downregulation of the miR-200 and miR-34 families, which allowed high PDGFRA and ZEB1 protein expression levels. Both tumour tissue- and cell culture-derived xenografts recapitulated the vasculoneural paraganglioma structure and arose from mesenchymal-like cells through a fixed developmental sequence. First, vasculoangiogenesis organized the microenvironment, building a perivascular niche which in turn supported neurogenesis. Neuroepithelial differentiation was associated with severe mitochondrial dysfunction, not present in cultured paraganglioma cells, but acquired in vivo during xenograft formation. Vasculogenesis was the Achilles' heel of xenograft development. In fact, imatinib, that targets endothelial-mural signalling, blocked paraganglioma xenograft formation (11 xenografts from 12 cell transplants in the control group versus 2 out of 10 in the treated group, P = 0.0015). Overall our key results were unaffected by the SDHx gene carrier status of the patient, characterized for 70 out of 77 cases. In conclusion, we explain the biphasic vasculoneural structure of paragangliomas and identify an early and pharmacologically actionable phase of paraganglioma organization.
Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/fisiopatología , Mesilato de Imatinib/uso terapéutico , Paraganglioma/tratamiento farmacológico , Paraganglioma/fisiopatología , Animales , Antineoplásicos/farmacología , Línea Celular , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Humanos , Mesilato de Imatinib/farmacología , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Organogénesis/efectos de los fármacos , Organogénesis/fisiología , Paraganglioma/genética , Paraganglioma/patología , Cultivo Primario de Células , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The given and family names of two co-authors were incorrect in the published article. The correct spelling should read as: Sampath Chandra Prasad and Vinagolu K Rajasekhar.
RESUMEN
Pancreatic cancer (PC) has a poor prognosis and displays resistance to immunotherapy. A better understanding of tumor-derived extracellular vesicle (EV) effects on immune responses might contribute to improved immunotherapy. EVs derived from Capan-2 and BxPC-3 PC cells isolated by ultracentrifugation were characterized by atomic force microscopy, Western blot (WB), nanoparticle tracking analysis, and label-free proteomics. Fresh PBMCs from healthy donors were treated with PC- or control-derived heterologous EVs, followed by flow cytometry analysis of CD8+ and CD4+ lymphocytes. The proteomics of lymphocytes sorted from EV-treated or untreated PBMCs was performed, and the IFN-γ concentration was measured by ELISA. Notably, most of the proteins identified in Capan-2 and BxPC-3 EVs by the proteomic analysis were connected in a single functional network (p = 1 × 10-16) and were involved in the "Immune System" (FDR: 1.10 × 10-24 and 3.69 × 10-19, respectively). Interestingly, the treatment of healthy donor-derived PBMCs with Capan-2 EVs but not with BxPC-3 EVs or heterologous control EVs induced early activation of CD8+ and CD4+ lymphocytes. The proteomics of lymphocytes sorted from EV-treated PBMCs was consistent with their activation by Capan-2 EVs, indicating IFN-γ among the major upstream regulators, as confirmed by ELISA. The proteomic and functional analyses indicate that PC-EVs have pleiotropic effects, and some may activate early immune responses, which might be relevant for the development of highly needed immunotherapeutic strategies in this immune-cold tumor.
RESUMEN
Head and neck paragangliomas, rare neoplasms of the paraganglia composed of nests of neurosecretory and glial cells embedded in vascular stroma, provide a remarkable example of organoid tumor architecture. To identify genes and pathways commonly deregulated in head and neck paraganglioma, we integrated high-density genome-wide copy number variation (CNV) analysis with microRNA and immunomorphological studies. Gene-centric CNV analysis of 24 cases identified a list of 104 genes most significantly targeted by tumor-associated alterations. The "NOTCH signaling pathway" was the most significantly enriched term in the list (P = 0.002 after Bonferroni or Benjamini correction). Expression of the relevant NOTCH pathway proteins in sustentacular (glial), chief (neuroendocrine) and endothelial cells was confirmed by immunohistochemistry in 47 head and neck paraganglioma cases. There were no relationships between level and pattern of NOTCH1/JAG2 protein expression and germline mutation status in the SDH genes, implicated in paraganglioma predisposition, or the presence/absence of immunostaining for SDHB, a surrogate marker of SDH mutations. Interestingly, NOTCH upregulation was observed also in cases with no evidence of CNVs at NOTCH signaling genes, suggesting altered epigenetic modulation of this pathway. To address this issue we performed microarray-based microRNA expression analyses. Notably 5 microRNAs (miR-200a,b,c and miR-34b,c), including those most downregulated in the tumors, correlated to NOTCH signaling and directly targeted NOTCH1 in in vitro experiments using SH-SY5Y neuroblastoma cells. Furthermore, lentiviral transduction of miR-200s and miR-34s in patient-derived primary tympano-jugular paraganglioma cell cultures was associated with NOTCH1 downregulation and increased levels of markers of cell toxicity and cell death. Taken together, our results provide an integrated view of common molecular alterations associated with head and neck paraganglioma and reveal an essential role of NOTCH pathway deregulation in this tumor type.
Asunto(s)
Epigénesis Genética/fisiología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Paraganglioma/genética , Paraganglioma/patología , Receptores Notch/genética , Receptores Notch/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Western Blotting , Caspasas/metabolismo , Muerte Celular/genética , Línea Celular Tumoral , Análisis Mutacional de ADN , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Lentivirus/genética , Análisis por Micromatrices , Microscopía Inmunoelectrónica , Nervios Periféricos/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Succinato Deshidrogenasa/genética , TransfecciónRESUMEN
Colorectal cancer (CRC) is one of the most common and fatal types of cancer. Inflammation promotes CRC development, however, the underlying etiological factors are unknown. Human cytomegalovirus (HCMV), a virus that induces inflammation and other cancer hallmarks, has been detected in several types of malignancy, including CRC. The present study investigated whether HCMV infection was associated with expression of the proinflammatory enzymes 5lipoxygenase (5LO) and cyclooxygenase2 (COX2) and other molecular, genetic and clinicopathological CRC features. The present study assessed 146 individual paraffinembedded CRC tissue microarray (TMA) cores already characterized for TP53 and KRAS mutations, microsatellite instability (MSI) status, Ki67 index and EGFR by immunohistochemistry (IHC). The cores were further analyzed by IHC for the expression of two HCMV proteins (Immediate Early, IE and pp65) and the inflammatory markers 5LO and COX2. The CRC cell lines Caco2 and LS174T were infected with HCMV strain VR1814, treated with antiviral drug ganciclovir (GCV) and/or antiinflammatory drug celecoxib (CCX) and analyzed by reverse transcriptionquantitative PCR and immunofluorescence for 5LO, COX2, IE and pp65 transcripts and proteins. HCMV IE and pp65 proteins were detected in ~90% of the CRC cases tested; this was correlated with COX2, 5LO and KI67 expression, but not with EGFR immunostaining, TP53 and KRAS mutations or MSI status. In vitro, HCMV infection upregulated 5LO and COX2 transcript and proteins in both Caco2 and LS174T cells and enhanced cell proliferation as determined by MTT assay. Treatment with GCV and CCX significantly decreased the transcript levels of COX2, 5LO, HCMV IE and pp65 in infected cells. HCMV was widely expressed in CRC and may promote inflammation and serve as a potential new target for CRC therapy.
Asunto(s)
Neoplasias Colorrectales , Infecciones por Citomegalovirus , Humanos , Araquidonato 5-Lipooxigenasa/genética , Células CACO-2 , Ciclooxigenasa 2/genética , Antígeno Ki-67 , Proteínas Proto-Oncogénicas p21(ras)/genética , Celecoxib/farmacología , Citomegalovirus/genética , Ganciclovir , Infecciones por Citomegalovirus/complicaciones , Infecciones por Citomegalovirus/genética , Neoplasias Colorrectales/genética , Receptores ErbBRESUMEN
Extracellular vesicles (EVs) are a heterogenous population of plasma membrane-surrounded particles that are released in the extracellular milieu by almost all types of living cells. EVs are key players in intercellular crosstalk, both locally and systemically, given that they deliver their cargoes (consisting of proteins, lipids, mRNAs, miRNAs, and DNA fragments) to target cells, crossing biological barriers. Those mechanisms further trigger a wide range of biological responses. Interestingly, EV phenotypes and cargoes and, therefore, their functions, stem from their specific parental cells. For these reasons, EVs have been proposed as promising candidates for EV-based, cell-free therapies. One of the new frontiers of cell-based immunotherapy for the fight against refractory neoplastic diseases is represented by genetically engineered chimeric antigen receptor T (CAR-T) lymphocytes, which in recent years have demonstrated their effectiveness by reaching commercialization and clinical application for some neoplastic diseases. CAR-T-derived EVs represent a recent promising development of CAR-T immunotherapy approaches. This crosscutting innovative strategy is designed to exploit the advantages of genetically engineered cell-based immunotherapy together with those of cell-free EVs, which in principle might be safer and more efficient in crossing biological and tumor-associated barriers. In this review, we underlined the potential of CAR-T-derived EVs as therapeutic agents in tumors.
RESUMEN
Head and neck paragangliomas (HNPGLs), rare chemoresistant tumors curable only with surgery, are strongly influenced by genetic predisposition, hence patients and relatives require lifetime follow-up with MRI and/or PET-CT because of de novo disease risk. This entails exposure to electromagnetic/ionizing radiation, costs, and organizational challenges, because patients and relatives are scattered far from reference centers. Simplified first-line screening strategies are needed. We employed flow injection analysis tandem mass spectrometry, as used in newborn metabolic screening, to compare the plasma metabolic profile of HNPGL patients (59 samples, 56 cases) and healthy controls (24 samples, 24 cases). Principal Component Analysis (PCA) and Partial Least Discriminant Analysis (PLS-DA) highlighted a distinctive HNPGL signature, likely reflecting the anaplerotic conversion of the TCA cycle to glutaminolysis and catabolism of branched amino acids, DNA damage and deoxyadenosine (dAdo) accumulation, impairment of fatty acid oxidation, switch towards the Warburg effect and proinflammatory lysophosphatidylcholines (LPCs) signaling. Statistical analysis of the metabolites that most impacted on PLS-DA was extended to 10 acoustic neuroma and 2 cholesteatoma patients, confirming significant differences relative to the HNPGL plasma metabolomic profile. The best confusion matrix from the ROC curve built on 2 metabolites, dAdo and C26:0-LPC, provided specificity of 94.29% and sensitivity of 89.29%, with positive and negative predictive values of 96.2% and 84.6%, respectively. Analysis of dAdo and C26:0-LPC levels in dried venous and capillary blood confirmed that dAdo, likely deriving from 2'-deoxy-ATP accumulated in HNPGL cells following endogenous genotoxic damage, efficiently discriminated HNPGL patients from healthy controls and acoustic neuroma/cholesteatoma patients on easily manageable dried blood spots.
RESUMEN
Pancreatic cancer (PC) is one of the leading causes of cancer-related death worldwide. Identification of novel tumor biomarkers is highly advocated in PC to optimize personalized treatment algorithms. Blood-circulating extracellular vesicles hold promise for liquid biopsy application in cancer. We used an optimized flow cytometry protocol to study leukocyte-derived EVs (CD45+) and PD-L1+ EVs in blood from 56 pancreatic cancer patients and 48 healthy controls (HCs). Our results show that PC patients presented higher blood levels of total EVs (p = 0.0003), leukocyte-derived EVs (LEVs) (p = 0.001) and PD-L1+ EVs (p = 0.01), as compared with HCs. Interestingly, a blood concentration of LEVs at baseline was independently associated with improved overall survival in patients with borderline resectable or primary unresectable PC (HR = 0.17; 95% CI 0.04-0.79; p = 0.02). Additionally, increased blood-based LEVs were independently correlated with prolonged progression-free survival (HR = 0.10; 95% CI 0.01-0.82; p = 0.03) and significantly associated with higher disease control rate (p = 0.02) in patients with advanced PC receiving standard chemotherapy. Notably, a strong correlation between a decrease in blood LEVs concentration during chemotherapy and disease control was observed (p = 0.005). These intriguing findings point to the potential of LEVs as novel blood-based EV biomarkers for improved personalized medicine in patients affected by PC.
RESUMEN
BACKGROUND: Stenotrophomonas maltophilia is emerging as one of the most frequently found bacteria in cystic fibrosis (CF) patients. In the present study, phenotypic and genotypic traits of a set of 98 isolates of S. maltophilia obtained from clinical (CF and non-CF patients) and environmental sources were comparatively evaluated. RESULTS: S. maltophilia exhibited a high level of genomic diversity in both CF and non-CF group, thus possibly allowing this bacterium to expand its pathogenic potentials. Strains sharing the same pulsotype infected different patients, thus likely indicating the occurrence of clonal spread or acquisition by a common source. CF isolates differed greatly in some phenotypic traits among each other and also when compared with non-CF isolates, demonstrating increased mean generation time and susceptibility to oxidative stress, but reduced ability in forming biofilm. Furthermore, in CF isolates flagella- and type IV pili-based motilities were critical for biofilm development, although not required for its initiation. Sequential isogenic strains isolated from the same CF patient displayed heterogeneity in biofilm and other phenotypic traits during the course of chronic infection. CF and non-CF isolates showed comparable virulence in a mouse model of lung infection. CONCLUSIONS: Overall, the phenotypic differences observed between CF and non-CF isolates may imply different selective conditions and persistence (adaptation) mechanisms in a hostile and heterogeneous environment such as CF lung. Molecular elucidation of these mechanisms will be essential to better understand the selective adaptation in CF airways in order to design improved strategies useful to counteract and eradicate S. maltophilia infection.
Asunto(s)
Fibrosis Quística/complicaciones , Infecciones por Bacterias Gramnegativas/microbiología , Stenotrophomonas maltophilia/clasificación , Stenotrophomonas maltophilia/aislamiento & purificación , Animales , Biopelículas/crecimiento & desarrollo , Análisis por Conglomerados , Fibrosis Quística/microbiología , Modelos Animales de Enfermedad , Electroforesis en Gel de Campo Pulsado , Fimbrias Bacterianas/fisiología , Flagelos/fisiología , Variación Genética , Genotipo , Humanos , Locomoción , Ratones , Tipificación Molecular , Estrés Oxidativo , Fenotipo , Neumonía Bacteriana/microbiología , Neumonía Bacteriana/patología , Enfermedades de los Roedores/microbiología , Enfermedades de los Roedores/patología , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/fisiología , Estrés Fisiológico , VirulenciaRESUMEN
Tumorigenesis due to viral infection accounts for a high fraction of the total global cancer burden (15-20%) of all human cancers. A comprehensive understanding of the mechanisms by which viral infection leads to tumor development is extremely important. One of the main mechanisms by which viruses induce host cell proliferation programs is through controlling the host's epigenetic machinery. In this review, we dissect the epigenetic pathways through which oncogenic viruses can integrate their genome into host cell chromosomes and lead to tumor progression. In addition, we highlight the potential use of drugs based on histone modifiers in reducing the global impact of cancer development due to viral infection.
RESUMEN
OBJECTIVES: To evaluate the in vitro antibacterial, antibiofilm, and antivirulence activities of apramycin, comparatively to tobramycin, against a set of P. aeruginosa from chronically infected cystic fibrosis (CF) patients. METHODS: The activity of antibiotics against planktonic cells was assessed by performing MIC, MBC, and time-kill assays. The activity against mature biofilms was evaluated, in a microtiter plate, both in terms of dispersion (crystal violet assay) and residual viability (viable cell count). The effect of drug exposure on selected P. aeruginosa virulence genes expression was assessed by real-time Reverse Transcription quantitative PCR (RT-qPCR). RESULTS: Apramycin MIC90 and MBC90 values were found at least fourfold lower than those for tobramycin. A comparable trend was observed for mucoid strains. Only 4 out of 24 strains (16.6%) showed an apramycin MIC higher than the epidemiological cut-off value of 64 mg/L, whereas a higher resistance rate was observed for tobramycin (62.5%; p < 0.01 vs. apramycin). In time-kill analyses, both aminoglycosides were found bactericidal, although apramycin showed a more rapid effect and did not allow for regrowth. Apramycin generally stimulated biofilm biomass formation, whereas tobramycin showed opposite trends depending on the strain tested. Both drugs caused a highly significant, dose-dependent reduction of biofilm viability, regardless of strain and concentration tested. The exposure to apramycin and tobramycin caused increased expression of mexA and mexC (multidrug efflux pumps), whereas tobramycin specifically increased the expression of aprA (alkaline protease) and toxA (exotoxin A). Neither apramycin nor tobramycin showed cytotoxic potential toward IB3-1 bronchial epithelial CF cells. CONCLUSION: Our results warrant future pharmacokinetic and pharmacodynamic studies for supporting the rationale to repurpose apramycin, a veterinary aminoglycoside, for CF lung infections.
RESUMEN
In previous studies we have demonstrated that the expression of the Major Histocompatibility Complex (MHC) class I gene in thyrocytes is controlled by several hormones, growth factors, and drugs. These substances mainly act on two regions of the MHC class I promoter a "tissue-specific" region (-800 to -676 bp) and a "hormone/cytokines-sensitive" region (-500 to -68 bp). In a previous study, we have shown that the role of the "tissue-specific" region in the MHC class I gene expression is dominant compared to that of the "hormone/cytokines-sensitive" region. In the present report we further investigate the dominant role of the "tissue-specific" region evaluating the effect of thyroid stimulating hormone (TSH), methimazole (MMI), phenylmethimazole (C10), glucose and thymosin-α1. By performing experiments of electrophoretic mobility shift assays (EMSAs) we show that TSH, MMI and C10, which inhibit MHC class I expression, act on the "tissue-specific" region increasing the formation of a silencer complex. Glucose and thymosin-α1, which stimulate MHC class I expression, act decreasing the formation of this complex. We further show that the silencer complex is formed by two distinct members of the transcription factors families activator protein-1 (AP-1) and nuclear factor-kB (NF-kB), c-jun and p65, respectively. These observations are important in order to understand the regulation of MHC class I gene expression in thyroid cells and its involvement in the development of thyroid autoimmunity.
Asunto(s)
Genes MHC Clase I/genética , Hormonas/fisiología , Glándula Tiroides/fisiología , Animales , Antitiroideos/farmacología , Línea Celular , Ensayo de Cambio de Movilidad Electroforética , Regulación de la Expresión Génica/efectos de los fármacos , Genes MHC Clase I/efectos de los fármacos , Glucosa/farmacología , Metimazol/análogos & derivados , Metimazol/farmacología , Ratas , Tionas/farmacología , Timosina/farmacología , Glándula Tiroides/citología , Glándula Tiroides/efectos de los fármacos , Tiroiditis Autoinmune/genética , Tiroiditis Autoinmune/patología , Tirotropina/farmacología , Factores de Transcripción/genéticaRESUMEN
Helicobacter pylori (Hp) is the major recognized risk factor for non-cardia gastric cancer (GC), but only a fraction of infected subjects develop GC, thus GC risk might reflect other genetic/environmental cofactors and/or differences in virulence among infectious Hp strains. Focusing on a high GC risk area of Northern Italy (Cremona, Lombardy) and using archived paraffin-embedded biopsies, we investigated the associations between the Hp vacA and cagA genotype variants and gastric intraepithelial neoplasia (GIN, 33 cases) versus non-neoplastic gastroduodenal lesions (NNGDLs, 37 cases). The glmM gene and the cagA and vacA (s and m) genotypes were determined by polymerase chain reaction (PCR) and sequencing. Hp was confirmed in 37/37 (100%) NNGDLs and detected in 9/33 GINs (27%), consistently with the well-known Hp loss in GC. CagA was detected in 4/9 Hp-positive GINs and in 29/37 NNGDLs. The vacA s1a and m1 subtypes were more common in GINs than in NNGDLs (6/7 vs. 12/34, p=0.014, for s1a; 7/7 vs. 18/34, p=0.020 for m1), with significant vacA s genotype-specific variance. The GIN-associated vacA s1a sequences clustered together, suggesting that aggressive Hp strains from a unique founder contribute to GC in the high-risk area studied.
RESUMEN
In this review, we propose that paraganglioma is a fundamentally organized, albeit aberrant, tissue composed of neoplastic vascular and neural cell types that share a common origin from a multipotent mesenchymal-like stem/progenitor cell. This view is consistent with the pseudohypoxic footprint implicated in the molecular pathogenesis of the disease, is in harmony with the neural crest origin of the paraganglia, and is strongly supported by the physiological model of carotid body hyperplasia. Our immunomorphological and molecular studies of head and neck paragangliomas demonstrate in all cases relationships between the vascular and the neural tumor compartments, that share mesenchymal and immature vasculo-neural markers, conserved in derived cell cultures. This immature, multipotent phenotype is supported by constitutive amplification of NOTCH signaling genes and by loss of the microRNA-200s and -34s, which control NOTCH1, ZEB1, and PDGFRA in head and neck paraganglioma cells. Importantly, the neuroepithelial component is distinguished by extreme mitochondrial alterations, associated with collapse of the ΔΨm. Finally, our xenograft models of head and neck paraganglioma demonstrate that mesenchymal-like cells first give rise to a vasculo-angiogenic network, and then self-organize into neuroepithelial-like clusters, a process inhibited by treatment with imatinib.
RESUMEN
Pancreatic cancer (PC) is one of the most lethal, chemoresistant malignancies and it is of paramount importance to find more effective therapeutic agents. Repurposing of non-anticancer drugs may expand the repertoire of effective molecules. Studies on repurposing of benzimidazole-based anthelmintics in PC and on their interaction with agents approved for PC therapy are lacking. We analyzed the effects of four Food and Drug Administration (FDA)-approved benzimidazoles on AsPC-1 and Capan-2 pancreatic cancer cell line viability. Notably, parbendazole was the most potent benzimidazole affecting PC cell viability, with half maximal inhibitory concentration (IC50) values in the nanomolar range. The drug markedly inhibited proliferation, clonogenicity and migration of PC cell lines through mechanisms involving alteration of microtubule organization and formation of irregular mitotic spindles. Moreover, parbendazole interfered with cell cycle progression promoting G2/M arrest, followed by the emergence of enlarged, polyploid cells. These abnormalities, suggesting a mitotic catastrophe, culminated in PC cell apoptosis, are also associated with DNA damage in PC cell lines. Remarkably, combinations of parbendazole with gemcitabine, a drug employed as first-line treatment in PC, synergistically decreased PC cell viability. In conclusion, this is the first study providing evidence that parbendazole as a single agent, or in combination with gemcitabine, is a repurposing candidate in the currently dismal PC therapy.
RESUMEN
The development of PPARα/γ dual or PPARα/γ/δ pan-agonists could represent an efficacious approach for a simultaneous pharmacological intervention on carbohydrate and lipid metabolism. Two series of new phenyldiazenyl fibrate derivatives of GL479, a previously reported PPARα/γ dual agonist, were synthesized and tested. Compound 12a was identified as a PPAR pan-agonist with moderate and balanced activity on the three PPAR isoforms (α, γ, δ). Moreover, docking experiments showed that 12a adopts a different binding mode in PPARγ compared to PPARα or PPARδ, providing a structural basis for further structure-guided design of PPAR pan-agonists. The beneficial effects of 12a were evaluated both in vitro, on the expression of PPAR target key metabolic genes, and ex vivo in two rat tissue inflammatory models. The obtained results allow considering this compound as an interesting lead for the development of a new class of PPAR pan-agonists endowed with an activation profile exploitable for therapy of metabolic syndrome.
RESUMEN
CRC-associated P53 mutations have not been studied extensively in non-Western countries at relatively low CRC risk. We examined, for the first time, 196 paraffin-embedded CRC cases from Northern Iran for mutations in P53 exons 5-8 using PCR-direct sequencing. P53 status and mutation site/type were correlated with nuclear protein accumulation, clinicopathologic variables and data on K-ras mutations and high-level microsatellite instability (MSI-H). We detected 96 P53 mutations in 87 (44.4%) cases and protein accumulation in 84 cases (42.8%). P53 mutations correlated directly with stage and inversely with MSI-H. Distal CRCs were more frequently mutated at major CpG hotspot codons [248 (8/66, 12.1%), 175 (7/66, 10.6%), and 245 (7/66, 10.6%)], while in proximal tumors codon 213, emerged as most frequently mutated (5/28, 17.9% vs. 3/66, 4.5%, P = 0.048). Transitions at CpGs, the most common mutation type, were more frequent in non-mucinous (25% vs. 10.4% in mucinous, P = 0.032), and distal CRC (27% vs. 12.5% in proximal, P = 0.02), and correlated with K-ras transversions. Transitions at non-CpGs, second most common P53 mutation, were more frequent in proximal tumors (15.6% vs. 4.7% in distal, P = 0.01), and correlated with K-ras transitions and MSI-H. Overall frequency and types of mutations and correlations with P53 accumulation, stage and MSI-H were as reported for non-Iranian patients. However P53 mutation site/type and correlations between P53 and K-ras mutation types differed between proximal and distal CRC. The codon 213 P53 mutation that recurred in proximal CRC was previously reported as frequent in esophageal cancer from Northern Iran.