Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 588(7836): 151-156, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33149305

RESUMEN

Lymphotoxin ß-receptor (LTßR) signalling promotes lymphoid neogenesis and the development of tertiary lymphoid structures1,2, which are associated with severe chronic inflammatory diseases that span several organ systems3-6. How LTßR signalling drives chronic tissue damage particularly in the lung, the mechanism(s) that regulate this process, and whether LTßR blockade might be of therapeutic value have remained unclear. Here we demonstrate increased expression of LTßR ligands in adaptive and innate immune cells, enhanced non-canonical NF-κB signalling, and enriched LTßR target gene expression in lung epithelial cells from patients with smoking-associated chronic obstructive pulmonary disease (COPD) and from mice chronically exposed to cigarette smoke. Therapeutic inhibition of LTßR signalling in young and aged mice disrupted smoking-related inducible bronchus-associated lymphoid tissue, induced regeneration of lung tissue, and reverted airway fibrosis and systemic muscle wasting. Mechanistically, blockade of LTßR signalling dampened epithelial non-canonical activation of NF-κB, reduced TGFß signalling in airways, and induced regeneration by preventing epithelial cell death and activating WNT/ß-catenin signalling in alveolar epithelial progenitor cells. These findings suggest that inhibition of LTßR signalling represents a viable therapeutic option that combines prevention of tertiary lymphoid structures1 and inhibition of apoptosis with tissue-regenerative strategies.


Asunto(s)
Pulmón/efectos de los fármacos , Pulmón/fisiología , Receptor beta de Linfotoxina/antagonistas & inhibidores , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Wnt/agonistas , Inmunidad Adaptativa , Envejecimiento/metabolismo , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Animales , Apoptosis/efectos de los fármacos , Enfisema/metabolismo , Femenino , Humanos , Inmunidad Innata , Pulmón/metabolismo , Receptor beta de Linfotoxina/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Humo/efectos adversos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
2.
Am J Respir Crit Care Med ; 209(6): 683-692, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38055196

RESUMEN

Rationale: Small airway disease is an important pathophysiological feature of chronic obstructive pulmonary disease (COPD). Recently, "pre-COPD" has been put forward as a potential precursor stage of COPD that is defined by abnormal spirometry findings or significant emphysema on computed tomography (CT) in the absence of airflow obstruction. Objective: To determine the degree and nature of (small) airway disease in pre-COPD using microCT in a cohort of explant lobes/lungs. Methods: We collected whole lungs/lung lobes from patients with emphysematous pre-COPD (n = 10); Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I (n = 6), II (n = 6), and III/IV (n = 7) COPD; and controls (n = 10), which were analyzed using CT and microCT. The degree of emphysema and the number and morphology of small airways were compared between groups, and further correlations were investigated with physiologic measures. Airway and parenchymal pathology was also validated with histopathology. Measurements and Main Results: The numbers of transitional bronchioles and terminal bronchioles per milliliter of lung were significantly lower in pre-COPD and GOLD stages I, II, and III/IV COPD compared with controls. In addition, the number of alveolar attachments of the transitional bronchioles and terminal bronchioles was also lower in pre-COPD and all COPD groups compared with controls. We did not find any differences between the pre-COPD and COPD groups in CT or microCT measures. The percentage of emphysema on CT showed the strongest correlation with the number of small airways in the COPD groups. Histopathology showed an increase in the mean chord length and a decrease in alveolar surface density in pre-COPD and all GOLD COPD stages compared with controls. Conclusions: Lungs of patients with emphysematous pre-COPD already show fewer small airways and airway remodeling even in the absence of physiologic airway obstruction.


Asunto(s)
Asma , Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Estudios Transversales , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/complicaciones , Enfisema Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/patología , Pulmón , Asma/patología , Microtomografía por Rayos X
3.
Angiogenesis ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580869

RESUMEN

In European countries, nearly 10% of all hospital admissions are related to respiratory diseases, mainly chronic life-threatening diseases such as COPD, pulmonary hypertension, IPF or lung cancer. The contribution of blood vessels and angiogenesis to lung regeneration, remodeling and disease progression has been increasingly appreciated. The vascular supply of the lung shows the peculiarity of dual perfusion of the pulmonary circulation (vasa publica), which maintains a functional blood-gas barrier, and the bronchial circulation (vasa privata), which reveals a profiled capacity for angiogenesis (namely intussusceptive and sprouting angiogenesis) and alveolar-vascular remodeling by the recruitment of endothelial precursor cells. The aim of this review is to outline the importance of vascular remodeling and angiogenesis in a variety of non-neoplastic and neoplastic acute and chronic respiratory diseases such as lung infection, COPD, lung fibrosis, pulmonary hypertension and lung cancer.

4.
Am J Transplant ; 24(4): 542-548, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37931751

RESUMEN

The Lung Session of the 2022 16th Banff Foundation for Allograft Pathology Conference-held in Banff, Alberta-focused on non-rejection lung allograft pathology and novel technologies for the detection of allograft injury. A multidisciplinary panel reviewed the state-of-the-art of current histopathologic entities, serologic studies, and molecular practices, as well as novel applications of digital pathology with artificial intelligence, gene expression analysis, and quantitative image analysis of chest computerized tomography. Current states of need as well as prospective integration of the aforementioned tools and technologies for complete assessment of allograft injury and its impact on lung transplant outcomes were discussed. Key conclusions from the discussion were: (1) recognition of limitations in current standard of care assessment of lung allograft dysfunction; (2) agreement on the need for a consensus regarding the standardized approach to the collection and assessment of pathologic data, inclusive of all lesions associated with graft outcome (eg, non-rejection pathology); and (3) optimism regarding promising novel diagnostic modalities, especially minimally invasive, which should be integrated into large, prospective multicenter studies to further evaluate their utility in clinical practice for directing personalized therapies to improve graft outcomes.


Asunto(s)
Inteligencia Artificial , Rechazo de Injerto , Estudios Prospectivos , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/etiología , Trasplante Homólogo , Pulmón , Biopsia
5.
Eur Respir J ; 63(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37973176

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) with coexistent emphysema, termed combined pulmonary fibrosis and emphysema (CPFE) may associate with reduced forced vital capacity (FVC) declines compared to non-CPFE IPF patients. We examined associations between mortality and functional measures of disease progression in two IPF cohorts. METHODS: Visual emphysema presence (>0% emphysema) scored on computed tomography identified CPFE patients (CPFE/non-CPFE: derivation cohort n=317/n=183, replication cohort n=358/n=152), who were subgrouped using 10% or 15% visual emphysema thresholds, and an unsupervised machine-learning model considering emphysema and interstitial lung disease extents. Baseline characteristics, 1-year relative FVC and diffusing capacity of the lung for carbon monoxide (D LCO) decline (linear mixed-effects models), and their associations with mortality (multivariable Cox regression models) were compared across non-CPFE and CPFE subgroups. RESULTS: In both IPF cohorts, CPFE patients with ≥10% emphysema had a greater smoking history and lower baseline D LCO compared to CPFE patients with <10% emphysema. Using multivariable Cox regression analyses in patients with ≥10% emphysema, 1-year D LCO decline showed stronger mortality associations than 1-year FVC decline. Results were maintained in patients suitable for therapeutic IPF trials and in subjects subgrouped by ≥15% emphysema and using unsupervised machine learning. Importantly, the unsupervised machine-learning approach identified CPFE patients in whom FVC decline did not associate strongly with mortality. In non-CPFE IPF patients, 1-year FVC declines ≥5% and ≥10% showed strong mortality associations. CONCLUSION: When assessing disease progression in IPF, D LCO decline should be considered in patients with ≥10% emphysema and a ≥5% 1-year relative FVC decline threshold considered in non-CPFE IPF patients.


Asunto(s)
Enfisema , Fibrosis Pulmonar Idiopática , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/complicaciones , Pulmón , Fibrosis , Enfisema/complicaciones , Progresión de la Enfermedad , Estudios Retrospectivos
6.
Liver Int ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847551

RESUMEN

BACKGROUND & AIMS: Cystic fibrosis (CF) is considered a multisystemic disorder in which CF-associated liver disease (CFLD) is the third most common cause of mortality. Currently, no effective treatment is available for CFLD because its pathophysiology is still unclear. Interestingly, CFLD exhibits identical vascular characteristics as non-cirrhotic portal hypertension, recently classified as porto-sinusoidal vascular disorders (PSVD). METHODS: Since endothelial cells (ECs) are an important component in PSVD, we performed single-cell RNA sequencing (scRNA-seq) on four explant livers from CFLD patients to identify differential endothelial characteristics which could contribute to the disease. We comprehensively characterized the endothelial compartment and compared it with publicly available scRNA-seq datasets from cirrhotic and healthy livers. Key gene signatures were validated ex vivo on patient tissues. RESULTS: We found that ECs from CF liver explants are more closely related to healthy than cirrhotic patients. In CF patients we also discovered a distinct population of liver sinusoidal ECs-coined CF LSECs-upregulating genes involved in the complement cascade and coagulation. Finally, our immunostainings further validated the predominant periportal location of CF LSECs. CONCLUSIONS: Our work showed novel aspects of human liver ECs at the single-cell level thereby supporting endothelial involvement in CFLD, and reinforcing the hypothesis that ECs could be a driver of PSVD. Therefore, considering the vascular compartment in CF and CFLD may help developing new therapeutic approaches for these diseases.

7.
Curr Opin Pulm Med ; 30(4): 377-381, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38305383

RESUMEN

PURPOSE OF REVIEW: Chronic lung allograft dysfunction (CLAD) remains a life-threatening complication following lung transplantation. Different CLAD phenotypes have recently been defined, based on the combination of pulmonary function testing and chest computed tomography (CT) scanning and spurred renewed interests in differential diagnosis, risk factors and management of CLAD. RECENT FINDINGS: Given their crucial importance in the differential diagnosis, we will discuss the latest development in assessing the pulmonary function and chest CT scan, but also their limitations in proper CLAD phenotyping, especially with regards to patients with baseline allograft dysfunction. Since no definitive treatment exists, it remains important to timely identify clinical risk factors, but also to assess the presence of specific patterns or biomarkers in tissue or in broncho alveolar lavage in relation to CLAD (phenotypes). We will provide a comprehensive overview of the latest advances in risk factors and biomarker research in CLAD. Lastly, we will also review novel preventive and curative treatment strategies for CLAD. SUMMARY: Although this knowledge has significantly advanced the field of lung transplantation, more research is warranted because CLAD remains a life-threatening complication for all lung transplant recipients.


Asunto(s)
Trasplante de Pulmón , Pruebas de Función Respiratoria , Tomografía Computarizada por Rayos X , Humanos , Trasplante de Pulmón/efectos adversos , Factores de Riesgo , Rechazo de Injerto/diagnóstico , Aloinjertos , Biomarcadores/metabolismo , Biomarcadores/análisis , Enfermedad Crónica , Disfunción Primaria del Injerto/diagnóstico , Disfunción Primaria del Injerto/terapia , Disfunción Primaria del Injerto/etiología , Disfunción Primaria del Injerto/fisiopatología , Diagnóstico Diferencial , Pulmón/fisiopatología , Pulmón/diagnóstico por imagen
8.
Am J Respir Cell Mol Biol ; 68(3): 326-338, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36476191

RESUMEN

Pulmonary fibrosis (PF) and pulmonary hypertension (PH) are chronic diseases of the pulmonary parenchyma and circulation, respectively, which may coexist, but underlying mechanisms remain elusive. Mutations in the GCN2 (general control nonderepressible 2) gene (EIF2AK4 [eukaryotic translation initiation factor 2 alpha kinase 4]) were recently associated with pulmonary veno-occlusive disease. The aim of this study is to explore the involvement of the GCN2/eIF2α (eukaryotic initiation factor 2α) pathway in the development of PH during PF, in both human disease and in a laboratory animal model. Lung tissue from patients with PF with or without PH was collected at the time of lung transplantation, and control tissue was obtained from tumor resection surgery. Experimental lung disease was induced in either male wild-type or EIF2AK4-mutated Sprague-Dawley rats, randomly receiving a single intratracheal instillation of bleomycin or saline. Hemodynamic studies and organ collection were performed 3 weeks after instillation. Only significant results (P < 0.05) are presented. In PF lung tissue, GCN2 protein expression was decreased compared with control tissue. GCN2 expression was reduced in CD31+ endothelial cells. In line with human data, GCN2 protein expression was decreased in the lung of bleomycin rats compared with saline. EIF2AK4-mutated rats treated with bleomycin showed increased parenchymal fibrosis (hydroxyproline concentrations) and vascular remodeling (media wall thickness) as well as increased right ventricular systolic pressure compared with wild-type animals. Our data show that GCN2 is dysregulated in both humans and in an animal model of combined PF and PH. The possibility of a causative implication of GCN2 dysregulation in PF and/or PH development should be further studied.


Asunto(s)
Hipertensión Pulmonar , Fibrosis Pulmonar , Animales , Humanos , Masculino , Ratas , Bleomicina , Células Endoteliales/patología , Hipertensión Pulmonar/patología , Pulmón/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Fibrosis Pulmonar/patología , Ratas Sprague-Dawley
9.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L675-L688, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37724349

RESUMEN

Lung transplantation (LTx) is a challenging procedure. Following the process of ischemia-reperfusion injury, the transplanted pulmonary graft might become severely damaged, resulting in primary graft dysfunction. In addition, during the intraoperative window, the right ventricle (RV) is at risk of acute failure. The interaction of right ventricular function with lung injury is, however, poorly understood. We aimed to address this interaction in a translational porcine model of pulmonary ischemia-reperfusion injury. Advanced pulmonary and hemodynamic assessment was used, including right ventricular pressure-volume loop analysis. The acute model was based on clamping and unclamping of the left lung hilus, respecting the different hemodynamic phases of a clinical lung transplantation. We found that forcing entire right ventricular cardiac output through a lung suffering from ischemia-reperfusion injury increased afterload (pulmonary vascular resistance from baseline to end experiment P < 0.0001) and induced right ventricular failure (RVF) in 5/9 animals. Notably, we identified different compensation patterns in failing versus nonfailing ventricles (arterial elastance P = 0.0008; stroke volume P < 0.0001). Furthermore, increased vascular pressure and flow produced by the right ventricle resulted in higher pulmonary injury, as measured by ex vivo CT density (correlation: pressure r = 0.8; flow r = 0.85). Finally, RV ischemia as measured by troponin-T was negatively correlated with pulmonary injury (r = -0.76); however, troponin-T values did not determine RVF in all animals. In conclusion, we demonstrate a delicate balance between development of pulmonary ischemia-reperfusion injury and right ventricular function during lung transplantation. Furthermore, we provide a physiological basis for potential benefit of extracorporeal life support technology.NEW & NOTEWORTHY In contrast to the abundant literature of mechanical pulmonary artery clamping to increase right ventricular afterload, we developed a model adding a biological factor of pulmonary ischemia-reperfusion injury. We did not only focus on the right ventricular behavior, but also on the interaction with the injured lung. We are the first to describe this interaction while addressing the hemodynamic intraoperative phases of clinical lung transplantation.


Asunto(s)
Insuficiencia Cardíaca , Lesión Pulmonar , Trasplante de Pulmón , Daño por Reperfusión , Disfunción Ventricular Derecha , Porcinos , Animales , Función Ventricular Derecha , Troponina T , Pulmón , Hemodinámica/fisiología
10.
Angiogenesis ; 26(2): 233-248, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36371548

RESUMEN

A wide range of cardiac symptoms have been observed in COVID-19 patients, often significantly influencing the clinical outcome. While the pathophysiology of pulmonary COVID-19 manifestation has been substantially unraveled, the underlying pathomechanisms of cardiac involvement in COVID-19 are largely unknown. In this multicentre study, we performed a comprehensive analysis of heart samples from 24 autopsies with confirmed SARS-CoV-2 infection and compared them to samples of age-matched Influenza H1N1 A (n = 16), lymphocytic non-influenza myocarditis cases (n = 8), and non-inflamed heart tissue (n = 9). We employed conventional histopathology, multiplexed immunohistochemistry (MPX), microvascular corrosion casting, scanning electron microscopy, X-ray phase-contrast tomography using synchrotron radiation, and direct multiplexed measurements of gene expression, to assess morphological and molecular changes holistically. Based on histopathology, none of the COVID-19 samples fulfilled the established diagnostic criteria of viral myocarditis. However, quantification via MPX showed a significant increase in perivascular CD11b/TIE2 + -macrophages in COVID-19 over time, which was not observed in influenza or non-SARS-CoV-2 viral myocarditis patients. Ultrastructurally, a significant increase in intussusceptive angiogenesis as well as multifocal thrombi, inapparent in conventional morphological analysis, could be demonstrated. In line with this, on a molecular level, COVID-19 hearts displayed a distinct expression pattern of genes primarily coding for factors involved in angiogenesis and epithelial-mesenchymal transition (EMT), changes not seen in any of the other patient groups. We conclude that cardiac involvement in COVID-19 is an angiocentric macrophage-driven inflammatory process, distinct from classical anti-viral inflammatory responses, and substantially underappreciated by conventional histopathologic analysis. For the first time, we have observed intussusceptive angiogenesis in cardiac tissue, which we previously identified as the linchpin of vascular remodeling in COVID-19 pneumonia, as a pathognomic sign in affected hearts. Moreover, we identified CD11b + /TIE2 + macrophages as the drivers of intussusceptive angiogenesis and set forward a putative model for the molecular regulation of vascular alterations.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Miocarditis , Humanos , Remodelación Vascular , SARS-CoV-2 , Inflamación
11.
N Engl J Med ; 383(2): 120-128, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32437596

RESUMEN

BACKGROUND: Progressive respiratory failure is the primary cause of death in the coronavirus disease 2019 (Covid-19) pandemic. Despite widespread interest in the pathophysiology of the disease, relatively little is known about the associated morphologic and molecular changes in the peripheral lung of patients who die from Covid-19. METHODS: We examined 7 lungs obtained during autopsy from patients who died from Covid-19 and compared them with 7 lungs obtained during autopsy from patients who died from acute respiratory distress syndrome (ARDS) secondary to influenza A(H1N1) infection and 10 age-matched, uninfected control lungs. The lungs were studied with the use of seven-color immunohistochemical analysis, micro-computed tomographic imaging, scanning electron microscopy, corrosion casting, and direct multiplexed measurement of gene expression. RESULTS: In patients who died from Covid-19-associated or influenza-associated respiratory failure, the histologic pattern in the peripheral lung was diffuse alveolar damage with perivascular T-cell infiltration. The lungs from patients with Covid-19 also showed distinctive vascular features, consisting of severe endothelial injury associated with the presence of intracellular virus and disrupted cell membranes. Histologic analysis of pulmonary vessels in patients with Covid-19 showed widespread thrombosis with microangiopathy. Alveolar capillary microthrombi were 9 times as prevalent in patients with Covid-19 as in patients with influenza (P<0.001). In lungs from patients with Covid-19, the amount of new vessel growth - predominantly through a mechanism of intussusceptive angiogenesis - was 2.7 times as high as that in the lungs from patients with influenza (P<0.001). CONCLUSIONS: In our small series, vascular angiogenesis distinguished the pulmonary pathobiology of Covid-19 from that of equally severe influenza virus infection. The universality and clinical implications of our observations require further research to define. (Funded by the National Institutes of Health and others.).


Asunto(s)
Infecciones por Coronavirus/patología , Endotelio Vascular/patología , Neovascularización Patológica , Neumonía Viral/patología , Trombosis/virología , Anciano , Anciano de 80 o más Años , Autopsia , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/mortalidad , Endotelio Vascular/virología , Femenino , Humanos , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana/mortalidad , Gripe Humana/patología , Pulmón/patología , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/mortalidad , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/virología , Insuficiencia Respiratoria , SARS-CoV-2
12.
Radiology ; 307(1): e221145, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36537894

RESUMEN

Background Interstitial lung abnormalities (ILAs) reflect imaging features on lung CT scans that are compatible with (early) interstitial lung disease. Despite accumulating evidence regarding the incidence, risk factors, and prognosis of ILAs, the histopathologic correlates of ILAs remain elusive. Purpose To determine the correlation between radiologic and histopathologic findings in CT-defined ILAs in human lung explants. Materials and Methods Explanted lungs or lobes from participants with radiologically documented ILAs were prospectively collected from 2010 to 2021. These specimens were air-inflated, frozen, and scanned with CT and micro-CT (spatial resolution of 0.7 mm and 90 µm, respectively). Subsequently, the lungs were cut and sampled with core biopsies. At least five samples per lung underwent micro-CT and subsequent histopathologic assessment with semiquantitative remodeling scorings. Based on area-specific radiologic scoring, the association between radiologic and histopathologic findings was assessed. Results Eight lung explants from six donors (median age at explantation, 71 years [range, 60-83 years]; four men) were included (unused donor lungs, n = 4; pre-emptive lobectomy for oncologic indications, n = 2). Ex vivo CT demonstrated ground-glass opacification, reticulation, and bronchiectasis. Micro-CT and histopathologic examination demonstrated that lung abnormalities were frequently paraseptal and associated with fibrosis and lymphocytic inflammation. The histopathologic results showed varying degrees of fibrosis in areas that appeared normal on CT scans. Regions of reticulation on CT scans generally had greater fibrosis at histopathologic analysis. Vasculopathy and bronchiectasis were also often present at histopathologic examination of lungs with ILAs. Fully developed fibroblastic foci were rarely observed. Conclusion This study demonstrated direct histologic correlates of CT-defined interstitial lung abnormalities. © RSNA, 2022 Supplemental material is available for this article. See also the editorial by Jeudy in this issue.


Asunto(s)
Bronquiectasia , Enfermedades Pulmonares Intersticiales , Masculino , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Pulmón/diagnóstico por imagen , Pulmón/patología , Enfermedades Pulmonares Intersticiales/diagnóstico por imagen , Fibrosis , Microtomografía por Rayos X
13.
Am J Respir Crit Care Med ; 205(1): 60-74, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724391

RESUMEN

Rationale: Fibrotic hypersensitivity pneumonitis (fHP) is an interstitial lung disease caused by sensitization to an inhaled allergen. Objectives: To identify the molecular determinants associated with progression of fibrosis. Methods: Nine fHP explant lungs and six unused donor lungs (as controls) were systematically sampled (4 samples/lung). According to microcomputed tomography measures, fHP cores were clustered into mild, moderate, and severe fibrosis groups. Gene expression profiles were assessed using weighted gene co-expression network analysis, xCell, gene ontology, and structure enrichment analysis. Gene expression of the prevailing molecular traits was also compared with idiopathic pulmonary fibrosis (IPF). The explant lung findings were evaluated in separate clinical fHP cohorts using tissue, BAL samples, and computed tomography scans. Measurements and Main Results: We found six molecular traits that associated with differential lung involvement. In fHP, extracellular matrix and antigen presentation/sensitization transcriptomic signatures characterized lung zones with only mild structural and histological changes, whereas signatures involved in honeycombing and B cells dominated the transcriptome in the most severely affected lung zones. With increasing disease severity, endothelial function was progressively lost, and progressive disruption in normal cellular homeostatic processes emerged. All six were also found in IPF, with largely similar associations with disease microenvironments. The molecular traits correlated with in vivo disease behavior in a separate clinical fHP cohort. Conclusions: We identified six molecular traits that characterize the morphological progression of fHP and associate with in vivo clinical behavior. Comparing IPF with fHP, the transcriptome landscape was determined considerably by local disease extent rather than by diagnosis alone.


Asunto(s)
Alveolitis Alérgica Extrínseca/genética , Alveolitis Alérgica Extrínseca/patología , Pulmón/patología , Transcriptoma , Adulto , Anciano , Alveolitis Alérgica Extrínseca/diagnóstico , Estudios de Casos y Controles , Progresión de la Enfermedad , Femenino , Fibrosis , Perfilación de la Expresión Génica , Marcadores Genéticos , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Índice de Severidad de la Enfermedad
14.
Am J Transplant ; 22(5): 1418-1429, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35029023

RESUMEN

Primary graft dysfunction (PGD) is a major obstacle after lung transplantation (LTx), associated with increased early morbidity and mortality. Studies in liver and kidney transplantation revealed prolonged anastomosis time (AT) as an independent risk factor for impaired short- and long-term outcomes. We investigated if AT during LTx is a risk factor for PGD. In this retrospective single-center cohort study, we included all first double lung transplantations between 2008 and 2016. The association of AT with any PGD grade 3 (PGD3) within the first 72 h post-transplant was analyzed by univariable and multivariable logistic regression analysis. Data on AT and PGD was available for 427 patients of which 130 (30.2%) developed PGD3. AT was independently associated with the development of any PGD3 ≤72 h in uni- (odds ratio [OR] per 10 min 1.293, 95% confidence interval [CI 1.136-1.471], p < .0001) and multivariable (OR 1.205, 95% CI [1.022-1.421], p = .03) logistic regression analysis. There was no evidence that the relation between AT and PGD3 differed between lung recipients from donation after brain death versus donation after circulatory death donors. This study identified AT as an independent risk factor for the development of PGD3 post-LTx. We suggest that the implantation time should be kept short and the lung cooled to decrease PGD-related morbidity and mortality post-LTx.


Asunto(s)
Trasplante de Pulmón , Disfunción Primaria del Injerto , Anastomosis Quirúrgica/efectos adversos , Estudios de Cohortes , Humanos , Trasplante de Pulmón/efectos adversos , Disfunción Primaria del Injerto/etiología , Estudios Retrospectivos , Factores de Riesgo
15.
Eur Respir J ; 59(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34675046

RESUMEN

RATIONALE: Peripheral airway obstruction is a key feature of chronic obstructive pulmonary disease (COPD), but the mechanisms of airway loss are unknown. This study aims to identify the molecular and cellular mechanisms associated with peripheral airway obstruction in COPD. METHODS: Ten explanted lung specimens donated by patients with very severe COPD treated by lung transplantation and five unused donor control lungs were sampled using systematic uniform random sampling (SURS), resulting in 240 samples. These samples were further examined by micro-computed tomography (CT), quantitative histology and gene expression profiling. RESULTS: Micro-CT analysis showed that the loss of terminal bronchioles in COPD occurs in regions of microscopic emphysematous destruction with an average airspace size of ≥500 and <1000 µm, which we have termed a "hot spot". Based on microarray gene expression profiling, the hot spot was associated with an 11-gene signature, with upregulation of pro-inflammatory genes and downregulation of inhibitory immune checkpoint genes, indicating immune response activation. Results from both quantitative histology and the bioinformatics computational tool CIBERSORT, which predicts the percentage of immune cells in tissues from transcriptomic data, showed that the hot spot regions were associated with increased infiltration of CD4 and CD8 T-cell and B-cell lymphocytes. INTERPRETATION: The reduction in terminal bronchioles observed in lungs from patients with COPD occurs in a hot spot of microscopic emphysema, where there is upregulation of IFNG signalling, co-stimulatory immune checkpoint genes and genes related to the inflammasome pathway, and increased infiltration of immune cells. These could be potential targets for therapeutic interventions in COPD.


Asunto(s)
Obstrucción de las Vías Aéreas , Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Bronquiolos/patología , Enfisema/complicaciones , Humanos , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Microtomografía por Rayos X
16.
Transpl Int ; 35: 10159, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651878

RESUMEN

The MUC5B promoter polymorphism (rs35705950) has been associated with interstitial lung disease (ILD) and with prolonged pre-transplant survival in idiopathic pulmonary fibrosis (IPF), but no information is available regarding its prevalence in other respiratory diseases and its influence on post-transplant outcome. We included the Leuven lung transplantation cohort between 1991 and 2015 (n = 801). We assessed the minor allele frequency (MAF) of the MUC5B variant in the entire study cohort and investigated the influence of recipient MUC5B promoter polymorphism on post-transplant outcome in patients who were transplanted after 2004. MUC5B was successfully genotyped in 746 patients. The MAF was significantly higher in ILD (17.6%) compared to chronic obstructive pulmonary disease (COPD)/emphysema (9.3%), cystic fibrosis (CF)/bronchiectasis (BRECT) (7.5%) and pulmonary hypertension (PHT) (7.4%) (p < 0.001). No association was observed between rs35705950 and chronic lung allograft dysfunction (CLAD)/graft loss in the ILD population [CLAD: HR 1.37 95% CI (0.70-2.68); graft loss: HR 1.02 95% CI (0.55-1.89)], nor the entire study cohort [CLAD: HR 0.96 95% CI (0.69-1.34); graft loss: HR 0.97 95% CI (0.70-1.35)]. The MUC5B promoter polymorphism is a very specific predictive factor for the presence of pulmonary fibrosis as it is only associated with pulmonary fibrosis and not with other chronic respiratory diseases. While the MUC5B promoter variant is associated with better pre-transplant survival among IPF patients, recipient MUC5B promoter variant does not play a role in post-transplant outcome.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Predisposición Genética a la Enfermedad , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/cirugía , Enfermedades Pulmonares Intersticiales/genética , Enfermedades Pulmonares Intersticiales/cirugía , Mucina 5B/genética , Polimorfismo Genético , Regiones Promotoras Genéticas
18.
Curr Opin Organ Transplant ; 27(1): 1-6, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34939958

RESUMEN

PURPOSE OF REVIEW: Chronic lung allograft dysfunction (CLAD) remains a major barrier preventing long-term survival following lung transplantation. As our clinical knowledge regarding its definition and presentation has significantly improved over the last years, adequate biomarkers to predict development of CLAD, phenotype of CLAD or prognosis post-CLAD diagnosis are definitely needed. RECENT FINDINGS: Radiological and physiological markers are gradually entering routine clinical practice. In-depth investigation of biological samples including broncho-alveolar lavage, biopsy and serum has generated potential biomarkers involved in fibrogenesis, airway injury and inflammation but none of these are universally accepted or implemented although progress has been made, specifically regarding donor-derived cell-free DNA and donor-specific antibodies. SUMMARY: Although a lot of promising biomarkers have been put forward, a very limited number has made it to routine clinical practice. Nevertheless, a biomarker that leads to earlier detection or more adequate disease phenotyping would advance the field enormously.


Asunto(s)
Trasplante de Pulmón , Pulmón , Aloinjertos , Biomarcadores , Enfermedad Crónica , Humanos , Trasplante de Pulmón/efectos adversos , Trasplante Homólogo
19.
Curr Opin Organ Transplant ; 27(3): 211-216, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35649111

RESUMEN

PURPOSE OF REVIEW: New chronic lung allograft dysfunction (CLAD) consensus documents were published in 2019, defining four phenotypes; bronchiolitis obliterans syndrome, restrictive allograft syndrome, mixed and undefined. Clearly, validation of these guidelines in a real life cohort is critical. RECENT FINDINGS: Indeed, validation has been performed recently, both after bilateral lung transplantation (LTx) and after single LTx illustrating that precise phenotyping based on pulmonary function alone can be difficult. Undertaking regular chest computed tomography scanning does appear very helpful in establishing the prognosis of the patients with CLAD. SUMMARY: Pulmonary function changes may not always identify the exact phenotype of CLAD and we provide further evidence for the important role of chest imaging at diagnosis and during the follow-up of patients with CLAD.


Asunto(s)
Bronquiolitis Obliterante , Enfermedad Injerto contra Huésped , Trasplante de Pulmón , Aloinjertos , Bronquiolitis Obliterante/diagnóstico por imagen , Bronquiolitis Obliterante/etiología , Humanos , Pulmón/diagnóstico por imagen , Trasplante de Pulmón/efectos adversos , Trasplante de Pulmón/métodos , Fenotipo
20.
Am J Transplant ; 21(1): 281-290, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32519458

RESUMEN

Data concerning sleep-disordered breathing (SDB) after lung transplantation (LTX) are scarce. This study aims to analyze prevalence, associated factors, and impact on survival of moderate to severe SDB in a large cohort of consecutive LTX patients (n = 219). Patients underwent a diagnostic polysomnography 1 year after LTX. Moderate to severe SDB was present in 57.5% of patients, with the highest prevalence in chronic obstructive pulmonary disease/emphysema (71.1%) and pulmonary fibrosis (65.1%). SDB patients were older, mostly male, and had higher body mass index and neck circumference. Nocturnal diastolic and 24-hour blood pressures were higher in SDB patients. In 45 patients, polysomnography was also performed pre-LTX. Compared to pre-LTX, mean apnea/hypopnea index (AHI) increased significantly after LTX. A significant correlation was seen between lung function parameters and AHI, suggesting a role of decreased caudal traction on the pharynx. Presence of SDB had no impact on mortality or prevalence of chronic lung allograft dysfunction. However, survival was better in continuous positive airway pressure (CPAP) compliant SDB patients compared to SDB patients without CPAP treatment. These findings may be pertinent for systematic screening of SDB after LTX.


Asunto(s)
Trasplante de Pulmón , Síndromes de la Apnea del Sueño , Estudios de Cohortes , Presión de las Vías Aéreas Positiva Contínua , Femenino , Humanos , Trasplante de Pulmón/efectos adversos , Masculino , Polisomnografía , Síndromes de la Apnea del Sueño/epidemiología , Síndromes de la Apnea del Sueño/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA