Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Hippocampus ; 31(7): 756-769, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33476077

RESUMEN

The nucleus reuniens (RE) and rhomboid (RH) nuclei of the ventral midline thalamus are reciprocally connected with the prefrontal cortex (PFC) and the hippocampus (HF) and serve as key intermediaries between these structures, regulating cognitive and emotional behaviors. Regarding affective behavior, several recent reports have described the involvement of RE/RH in the acquisition and retention of conditioned fear, but little is known regarding their role (RE/RH) in anxiety-like behaviors. We examined the role of RH/RE on avoidance and defensive behaviors in male Long Evans rats using the elevated plus maze (EPM). We found that the reversible suppression of RE/RH with muscimol increased avoidance behavior to the open arms of the plus maze as shown by: (a) significant reductions in open arm entries; (b) reductions in the mean duration of time spent in the open arms; and (c) significant increases in retreats during open arm exploration. This was coupled with decreases in the number of head dips in the maze. Consistent with these behavioral effects, a single exposure of naïve rats to the plus maze produced significant increases in c-fos expression selectively in RE and RH of midline thalamic nuclei. We posit that RE/RH normally acts to optimize adaptive responses to anxiety-eliciting situations, and disruptions of RE/RH produce severe deficits in coping behaviors-or as shown here increases in avoidance/defensive behaviors. In sum, the present results establish a novel role for RE/RH in anxiety-like avoidance behavior. In addition to its role in attention, working memory, and executive control, RE/RH also regulates adaptative responses to not only fear but also to anxiogenic stimuli. As such, dysfunction of RE/RH may contribute to the amalgamation of symptoms common to many mental health disorders including anxiety, depression, schizophrenia, and PTSD.


Asunto(s)
Reacción de Prevención , Núcleos Talámicos de la Línea Media , Animales , Ansiedad , Masculino , Aprendizaje por Laberinto/fisiología , Memoria a Corto Plazo/fisiología , Núcleos Talámicos de la Línea Media/fisiología , Ratas , Ratas Long-Evans
2.
Learn Mem ; 26(7): 191-205, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209114

RESUMEN

The nucleus reuniens of the thalamus (RE) is a key component of an extensive network of hippocampal and cortical structures and is a fundamental substrate for cognition. A common misconception is that RE is a simple relay structure. Instead, a better conceptualization is that RE is a critical component of a canonical higher-order cortico-thalamo-cortical circuit that supports communication between the medial prefrontal cortex (mPFC) and the hippocampus (HC). RE dysfunction is implicated in several clinical disorders including, but not limited to Alzheimer's disease, schizophrenia, and epilepsy. Here, we review key anatomical and physiological features of the RE based primarily on studies in rodents. We present a conceptual model of RE circuitry within the mPFC-RE-HC system and speculate on the computations RE enables. We review the rapidly growing literature demonstrating that RE is critical to, and its neurons represent, aspects of behavioral tasks that place demands on memory focusing on its role in navigation, spatial working memory, the temporal organization of memory, and executive functions.


Asunto(s)
Región CA1 Hipocampal/anatomía & histología , Memoria a Corto Plazo/fisiología , Núcleos Talámicos de la Línea Media/anatomía & histología , Corteza Prefrontal/anatomía & histología , Navegación Espacial/fisiología , Animales , Ácido Aspártico/fisiología , Ondas Encefálicas/fisiología , Sincronización Cortical/fisiología , Función Ejecutiva/fisiología , Ácido Glutámico/fisiología , Humanos , Interneuronas/fisiología , Aprendizaje por Laberinto/fisiología , Núcleos Talámicos de la Línea Media/fisiología , Red Nerviosa/fisiología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Neuronas/fisiología , Ratas , Transmisión Sináptica
3.
Hippocampus ; 28(4): 297-311, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29357198

RESUMEN

The hippocampal formation (HF) and medial prefrontal cortex (mPFC) play critical roles in spatial working memory (SWM). The nucleus reuniens (RE) of the ventral midline thalamus is an important anatomical link between the HF and mPFC, and as such is crucially involved in SWM functions that recruit both structures. Little is known, however, regarding the role of RE in other behaviors mediated by this circuit. In the present study, we examined the role of RE in spatial working memory and executive functioning following reversible inactivation of RE with either muscimol or procaine. Rats were implanted with an indwelling cannula targeting RE and trained in a delayed nonmatch to sample spatial alternation T-maze task. For the task, sample and choice runs were separated by moderate or long delays (30, 60, and 120 s). Following asymptotic performance, rats were tested following infusions of drug or vehicle. Muscimol infused into RE impaired SWM at all delays, whereby procaine only impaired performance at the longest delays. Furthermore, RE inactivation with muscimol produced a failure in win-shift strategy as well as severe spatial perseveration, whereby rats persistently made re-entries into incorrect arms during correction trials, despite the absence of reward. This demonstrated marked changes in behavioral flexibility and response strategy. These results strengthen the role of nucleus reuniens as a pivotal link between hippocampus and prefrontal cortex in cognitive and executive functions and suggest that nucleus reuniens may be a potential target in the treatment of CNS disorders such as schizophrenia, attention deficit hyperactivity disorder, addiction, and obsessive-compulsive disorder, whose symptoms are defined by hippocampal-prefrontal dysfunctions.


Asunto(s)
Función Ejecutiva/fisiología , Memoria a Corto Plazo/fisiología , Memoria Espacial/fisiología , Núcleos Talámicos Ventrales/fisiología , Animales , Fármacos del Sistema Nervioso Central/farmacología , Función Ejecutiva/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Memoria a Corto Plazo/efectos de los fármacos , Muscimol/farmacología , Procaína/farmacología , Ratas Long-Evans , Memoria Espacial/efectos de los fármacos , Factores de Tiempo , Núcleos Talámicos Ventrales/efectos de los fármacos
4.
J Neurosci ; 34(46): 15340-6, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25392501

RESUMEN

The main impetus for a mini-symposium on corticothalamic interrelationships was the recent number of studies highlighting the role of the thalamus in aspects of cognition beyond sensory processing. The thalamus contributes to a range of basic cognitive behaviors that include learning and memory, inhibitory control, decision-making, and the control of visual orienting responses. Its functions are deeply intertwined with those of the better studied cortex, although the principles governing its coordination with the cortex remain opaque, particularly in higher-level aspects of cognition. How should the thalamus be viewed in the context of the rest of the brain? Although its role extends well beyond relaying of sensory information from the periphery, the main function of many of its subdivisions does appear to be that of a relay station, transmitting neural signals primarily to the cerebral cortex from a number of brain areas. In cognition, its main contribution may thus be to coordinate signals between diverse regions of the telencephalon, including the neocortex, hippocampus, amygdala, and striatum. This central coordination is further subject to considerable extrinsic control, for example, inhibition from the basal ganglia, zona incerta, and pretectal regions, and chemical modulation from ascending neurotransmitter systems. What follows is a brief review on the role of the thalamus in aspects of cognition and behavior, focusing on a summary of the topics covered in a mini-symposium held at the Society for Neuroscience meeting, 2014.


Asunto(s)
Conducta/fisiología , Cognición/fisiología , Tálamo/fisiología , Animales , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Humanos , Aprendizaje/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Tálamo/citología
5.
Behav Brain Res ; 470: 115066, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38801950

RESUMEN

The nucleus reuniens (RE) of the ventral midline thalamus is a critical node in the communication between the orbitomedial prefrontal cortex (OFC) and the hippocampus (HF). While RE has been shown to directly participate in memory-associated functions through its connections with the medial prefrontal cortex and HF, less is known regarding the role of RE in executive functioning. Here, we examined the involvement of RE and its projections to the orbital cortex (ORB) in attention and behavioral flexibility in male rats using the attentional set shifting task (AST). Rats expressing the hM4Di DREADD receptor in RE were implanted with indwelling cannulas in either RE or the ventromedial ORB to pharmacologically inhibit RE or its projections to the ORB with intracranial infusions of clozapine-N-oxide hydrochloride (CNO). Chemogenetic-induced suppression of RE resulted in impairments in reversal learning and set-shifting. This supports a vital role for RE in behavioral flexibility - or the ability to adapt behavior to changing reward or rule contingencies. Interestingly, CNO suppression of RE projections to the ventromedial ORB produced impairments in rule abstraction - or dissociable effects elicited with direct RE suppression. In summary, the present findings indicate that RE, mediated in part by actions on the ORB, serves a critical role in the flexible use of rules to drive goal directed behavior. The cognitive deficits of various neurological disorders with impaired communication between the HF and OFC, may be partly attributed to alterations of RE -- as an established intermediary between these cortical structures.


Asunto(s)
Atención , Clozapina , Función Ejecutiva , Núcleos Talámicos de la Línea Media , Corteza Prefrontal , Aprendizaje Inverso , Animales , Masculino , Atención/efectos de los fármacos , Atención/fisiología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Núcleos Talámicos de la Línea Media/fisiología , Aprendizaje Inverso/efectos de los fármacos , Aprendizaje Inverso/fisiología , Ratas , Clozapina/farmacología , Clozapina/análogos & derivados , Función Ejecutiva/fisiología , Función Ejecutiva/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Ratas Long-Evans , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología
6.
Brain Struct Funct ; 228(8): 1835-1847, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36598561

RESUMEN

The midline thalamus is critical for flexible cognition, memory, and stress regulation in humans and its dysfunction is associated with several neurological and psychiatric disorders, including Alzheimer's disease, schizophrenia, and depression. Despite the pervasive role of the midline thalamus in cognition and disease, there is a limited understanding of its function in humans, likely due to the absence of a rigorous noninvasive neuroimaging methodology to identify its location. Here, we introduce a new method for identifying the midline thalamus in vivo using probabilistic tractography and k-means clustering with diffusion weighted imaging data. This approach clusters thalamic voxels based on data-driven cortical and subcortical connectivity profiles and then segments the midline thalamus according to anatomical connectivity tracer studies in rodents and macaques. Results from two different diffusion weighted imaging sets, including adult data (22-35 years) from the Human Connectome Project (n = 127) and adolescent data (9-14 years) collected at Florida International University (n = 34) showed that this approach reliably classifies midline thalamic clusters. As expected, these clusters were most evident along the dorsal/ventral extent of the third ventricle and were primarily connected to the agranular medial prefrontal cortex (e.g., anterior cingulate cortex), nucleus accumbens, and medial temporal lobe regions. The midline thalamus was then bisected based on a human brain atlas into a dorsal midline thalamic cluster (paraventricular and paratenial nuclei) and a ventral midline thalamic cluster (rhomboid and reuniens nuclei). This anatomical connectivity-based identification of the midline thalamus offers the opportunity for necessary investigation of this region in vivo in the human brain and how it relates to cognitive functions in humans, and to psychiatric and neurological disorders.


Asunto(s)
Núcleos Talámicos de la Línea Media , Tálamo , Adulto , Humanos , Adolescente , Tálamo/diagnóstico por imagen , Tálamo/fisiología , Núcleos Talámicos de la Línea Media/fisiología , Núcleo Accumbens/fisiología , Encéfalo/diagnóstico por imagen , Cognición , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología
7.
J Comp Neurol ; 531(2): 217-237, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36226328

RESUMEN

The orbital cortex (ORB) of the rat consists of five divisions: the medial (MO), ventral (VO), ventrolateral (VLO), lateral (LO), and dorsolateral (DLO) orbital cortices. No previous report has comprehensively examined and compared projections from each division of the ORB to the thalamus. Using the anterograde anatomical tracer, Phaseolus vulgaris leucoagglutinin, we describe the efferent projections from the five divisions of the ORB to the thalamus in the rat. We demonstrated that, with some overlap, each division of the ORB distributed in a distinct (and unique) manner to nuclei of the thalamus. Overall, ORB projected to a relatively restricted number of sites in the thalamus, and strikingly distributed entirely to structures of the medial/midline thalamus, while completely avoiding lateral regions or principal nuclei of the thalamus. The main termination sites in the thalamus were the paratenial nucleus (PT) and nucleus reuniens (RE) of the midline thalamus, the medial (MDm) and central (MDc) divisions of the mediodorsal nucleus, the intermediodorsal nucleus, the central lateral, paracentral, and central medial nuclei of the rostral intralaminar complex and the submedial nucleus (SM). With some exceptions, medial divisions of the ORB (MO, VO) mainly targeted "limbic-associated" nuclei such as PT, RE, and MDm, whereas lateral division (VLO, LO, DLO) primarily distributed to "sensorimotor-associated" nuclei including MDc, SM, and the rostral intralaminar complex. As discussed herein, the medial/midline thalamus may represent an important link (or bridge) between the orbital cortex and the hippocampus and between the ORB and medial prefrontal cortex. In summary, the present results demonstrate that each division of the orbital cortex projects in a distinct manner to nuclei of the thalamus which suggests unique functions for each division of the orbital cortex.


Asunto(s)
Núcleos Talámicos Intralaminares , Corteza Prefrontal , Animales , Ratas , Tálamo , Núcleos Talámicos de la Línea Media , Hipocampo , Fitohemaglutininas , Vías Nerviosas
8.
Nat Commun ; 14(1): 4326, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468487

RESUMEN

Episodic memory-based decision-making requires top-down medial prefrontal cortex and hippocampal interactions. This integrated prefrontal-hippocampal memory state is thought to be organized by synchronized network oscillations and mediated by connectivity with the thalamic nucleus reuniens (RE). Whether and how the RE synchronizes prefrontal-hippocampal networks in memory, however, remains unknown. Here, we recorded local field potentials from the prefrontal-RE-hippocampal network while rats engaged in a nonspatial sequence memory task, thereby isolating memory-related activity from running-related oscillations. We found that synchronous prefrontal-hippocampal beta bursts (15-30 Hz) dominated during memory trials, whereas synchronous theta activity (6-12 Hz) dominated during non-memory-related running. Moreover, RE beta activity appeared first, followed by prefrontal and hippocampal synchronized beta, suggesting that prefrontal-hippocampal beta could be driven by the RE. To test whether the RE is capable of driving prefrontal-hippocampal beta synchrony, we used an optogenetic approach (retroAAV-ChR2). RE activation induced prefrontal-hippocampal beta coherence and reduced theta coherence, matching the observed memory-driven network state in the sequence task. These findings are the first to demonstrate that the RE contributes to memory by driving transient synchronized beta in the prefrontal-hippocampal system, thereby facilitating interactions that underlie memory-based decision-making.


Asunto(s)
Núcleos Talámicos de la Línea Media , Corteza Prefrontal , Ratas , Animales , Núcleos Talámicos de la Línea Media/fisiología , Corteza Prefrontal/fisiología , Hipocampo/fisiología , Núcleos Talámicos , Vías Nerviosas/fisiología
9.
Front Behav Neurosci ; 16: 964644, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36082310

RESUMEN

The midline and intralaminar nuclei of the thalamus form a major part of the "limbic thalamus;" that is, thalamic structures anatomically and functionally linked with the limbic forebrain. The midline nuclei consist of the paraventricular (PV) and paratenial nuclei, dorsally and the rhomboid and nucleus reuniens (RE), ventrally. The rostral intralaminar nuclei (ILt) consist of the central medial (CM), paracentral (PC) and central lateral (CL) nuclei. We presently concentrate on RE, PV, CM and CL nuclei of the thalamus. The nucleus reuniens receives a diverse array of input from limbic-related sites, and predominantly projects to the hippocampus and to "limbic" cortices. The RE participates in various cognitive functions including spatial working memory, executive functions (attention, behavioral flexibility) and affect/fear behavior. The PV receives significant limbic-related afferents, particularly the hypothalamus, and mainly distributes to "affective" structures of the forebrain including the bed nucleus of stria terminalis, nucleus accumbens and the amygdala. Accordingly, PV serves a critical role in "motivated behaviors" such as arousal, feeding/consummatory behavior and drug addiction. The rostral ILt receives both limbic and sensorimotor-related input and distributes widely over limbic and motor regions of the frontal cortex-and throughout the dorsal striatum. The intralaminar thalamus is critical for maintaining consciousness and directly participates in various sensorimotor functions (visuospatial or reaction time tasks) and cognitive tasks involving striatal-cortical interactions. As discussed herein, while each of the midline and intralaminar nuclei are anatomically and functionally distinct, they collectively serve a vital role in several affective, cognitive and executive behaviors - as major components of a brainstem-diencephalic-thalamocortical circuitry.

10.
Synapse ; 65(9): 919-28, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21308802

RESUMEN

The reticular nucleus (RT) of the thalamus, a thin sheet of GABAergic neurons located between the external medullary lamina and the internal capsule of the thalamus, has functionally distinct afferent and efferent connections with thalamic nuclei, the neocortex, the basal forebrain and the brainstem. RT is critically positioned to rhythmically pace thalamocortical networks leading to the generation of spindle activity during the early phases of sleep and during absence (spike-wave) seizures. Serotonin, acting on 5-HT(1A) receptors on parvalbumin-containing cells of RT, has been implicated in this rhythmicity. However, the precise source(s) of 5-HT afferents to the RT remains to be determined. In the present study, we injected the retrograde tracer, Fluorogold, into dorsal and ventral regions of RT to determine the origins of raphe input to RT. We further characterized the distribution of 5-HT fibers to RT by using immunohistochemistry for 5-HT and for the 5HT transporter (SERT) detection. Finally, we described the presence of the two major postsynaptic 5-HT receptors in RT, 5-HT(1A) and 5-HT(2A) receptors. Our results show that the dorsal raphe nucleus and the supralemniscal nucleus (B9) of the midbrain are the principal sources of raphe projections to RT. In addition, serotonergic fibers (5-HT and SERT positive) were richly distributed throughout RT, and 5-HT(1A) and 5-HT(2A) receptors were highly expressed on RT neurons and dendrites. These findings suggest a significant 5-HT modulatory influence on GABAergic neurons of RT in the control of rhythmical (or spindle) activity in thalamocortical systems directly associated with sleep and possibly with absence seizures.


Asunto(s)
Vías Nerviosas/fisiología , Neuronas/metabolismo , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Núcleos Talámicos/citología , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Estilbamidinas/metabolismo
11.
J Comp Neurol ; 529(3): 524-538, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32472571

RESUMEN

We review evidence challenging the hypothesis that memories are processed or consolidated in sleep. We argue that the brain is in an unconscious state in sleep, akin to general anesthesia (GA), and hence is incapable of meaningful cognitive processing-the sole purview of waking consciousness. At minimum, the encoding of memories in sleep would require that waking events are faithfully transferred to and reproduced in sleep. Remarkably, however, this has never been demonstrated, as waking experiences are never truly replicated in sleep but rather appear in very altered or distorted forms. General anesthetics (GAs) exert their effects through endogenous sleep-wake control systems and accordingly GA and sleep share several common features: sensory blockade, immobility, amnesia and lack of awareness (unconsciousness). The loss of consciousness in non-REM (NREM) sleep or to GAs is characterized by: (a) delta oscillations throughout the cortex; (b) marked reductions in neural activity (from waking) over widespread regions of the cortex, most pronounced in frontal and parietal cortices; and (c) a significant disruption of the functional connectivity of thalamocortical and corticocortical networks, particularly those involved in "higher order" cognitive functions. Several (experimental) reports in animals and humans have shown that disrupting the activity of the cortex, particularly the orbitofrontal cortex, severely impairs higher order cognitive and executive functions. The profound and widespread deactivation of the cortex in the unconscious states of NREM sleep or GA would be expected to produce an equivalent, or undoubtedly a much greater, disruptive effect on mnemonic and cognitive functions. In conclusion, we contend that the unconscious, severely altered state of the brain in NREM sleep would negate any possibility of cognitive processing in NREM sleep.


Asunto(s)
Anestesia General , Corteza Cerebral/fisiología , Cognición/fisiología , Sueños/fisiología , Sueño/fisiología , Inconsciencia/fisiopatología , Anestesia General/métodos , Animales , Corteza Cerebral/efectos de los fármacos , Cognición/efectos de los fármacos , Sueños/efectos de los fármacos , Electroencefalografía/efectos de los fármacos , Electroencefalografía/métodos , Humanos , Sueño/efectos de los fármacos , Inconsciencia/inducido químicamente , Vigilia/efectos de los fármacos , Vigilia/fisiología
12.
Behav Brain Res ; 410: 113325, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-33910030

RESUMEN

The nucleus reuniens (RE) of the ventral midline thalamus is strongly reciprocally connected with the hippocampus (HF) and medial prefrontal cortex (PFC), serving a critical role in affective and cognitive functioning. While midline thalamic nuclei have been implicated in the modulation of states of arousal and consciousness, few studies have addressed RE's role in behavioral state control. Accordingly, as a first line of investigation, we examined the discharge properties of RE neurons in behaving rats throughout the sleep-wake cycle. We analyzed 153 units in RE which demonstrated heterogeneity in discharge rates and pattern of activity across sleep wake states. Using a rate ratio of activity in wake vs. REM, we found that the majority of cells displayed state-related changes and were classified into distinct cell types, exhibiting their highest discharge rates during active waking (AW), REM sleep, or maintaining equivalent activity across AW/REM. We further distinguished cells as either slow firing (SF = < 10 Hz) or fast firing (FF =>10 Hz) cells. The majority of cells, independent of state-related preference, were SF. FF RE cells were primarily wake active and wake/REM cell types. This diverse set of RE neurons are likely modulated by key brainstem and hypothalamic nuclei, which in turn, drive RE to exert strong effects on its cortical targets during waking and REM sleep. RE may not only act as a node in HF-PFC circuitry, but also as a critical thalamic link in ascending arousal and attentional networks.


Asunto(s)
Potenciales de Acción/fisiología , Nivel de Alerta/fisiología , Hipocampo/fisiología , Núcleos Talámicos de la Línea Media/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Sueño REM/fisiología , Vigilia/fisiología , Animales , Conducta Animal/fisiología , Masculino , Ratas , Ratas Sprague-Dawley
14.
Cell Rep ; 28(3): 640-654.e6, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315044

RESUMEN

We remember our lives as sequences of events, but it is unclear how these memories are controlled during retrieval. In rats, the medial prefrontal cortex (mPFC) is positioned to influence sequence memory through extensive top-down inputs to regions heavily interconnected with the hippocampus, notably the nucleus reuniens of the thalamus (RE) and perirhinal cortex (PER). Here, we used an hM4Di synaptic-silencing approach to test our hypothesis that specific mPFC→RE and mPFC→PER projections regulate sequence memory retrieval. First, we found non-overlapping populations of mPFC cells project to RE and PER. Second, suppressing mPFC activity impaired sequence memory. Third, inhibiting mPFC→RE and mPFC→PER pathways effectively abolished sequence memory. Finally, a sequential lag analysis showed that the mPFC→RE pathway contributes to a working memory retrieval strategy, whereas the mPFC→PER pathway supports a temporal context memory retrieval strategy. These findings demonstrate that mPFC→RE and mPFC→PER pathways serve as top-down mechanisms that control distinct sequence memory retrieval strategies.


Asunto(s)
Memoria a Corto Plazo/fisiología , Vías Nerviosas/fisiología , Corteza Prefrontal/fisiología , Receptor Muscarínico M4/metabolismo , Animales , Clozapina/análogos & derivados , Clozapina/farmacología , Antagonistas del GABA/farmacología , Hipocampo/fisiología , Memoria a Corto Plazo/efectos de los fármacos , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Núcleos Talámicos de la Línea Media/fisiología , Corteza Perirrinal/efectos de los fármacos , Corteza Perirrinal/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Long-Evans , Receptor Muscarínico M4/efectos de los fármacos , Antagonistas de la Serotonina/farmacología
15.
Neuron ; 44(1): 135-48, 2004 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-15450166

RESUMEN

We discuss several lines of evidence refuting the hypothesis that procedural or declarative memories are processed/consolidated in sleep. One of the strongest arguments against a role for sleep in declarative memory involves the demonstration that the marked suppression or elimination of REM sleep in subjects on antidepressant drugs or with brainstem lesions produces no detrimental effects on cognition. Procedural memory, like declarative memory, undergoes a slow, time-dependent period of consolidation. A process has recently been described wherein performance on some procedural tasks improves with the mere passage of time and has been termed "enhancement." Some studies, but not others, have reported that the consolidation/enhancement of perceptual and motor skills is dependent on sleep. We suggest that consolidation or enhancement, initiated in waking with task acquisition, could in some instances extend to sleep, but sleep would serve no unique role in these processes. In sum, there is no compelling evidence to support a relationship between sleep and memory consolidation.


Asunto(s)
Sueños/fisiología , Memoria/fisiología , Prueba de Realidad , Sueño/fisiología , Animales , Humanos
16.
Brain Res Bull ; 71(6): 601-9, 2007 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-17292803

RESUMEN

The medial prefrontal cortex and the hippocampus serve well recognized roles in memory processing. The hippocampus projects densely to, and exerts strong excitatory actions on, the medial prefrontal cortex. Interestingly, the medial prefrontal cortex, in rats and other species, has no direct return projections to the hippocampus, and few projections to parahippocampal structures including the entorhinal cortex. It is well established that the nucleus reuniens of the midline thalamus is the major source of thalamic afferents to the hippocampus. Since the medial prefrontal cortex also distributes to nucleus reuniens, we examined medial prefrontal connections with populations of nucleus reuniens neurons projecting to hippocampus. We used a combined anterograde and retrograde tracing procedure at the light and electron microscopic levels. Specifically, we made Phaseolus vulgaris-leuccoagglutinin (PHA-L) injections into the medial prefrontal cortex and Fluorogold injections into the hippocampus (CA1/subiculum) and examined termination patterns of anterogradely PHA-L labeled fibers on retrogradely FG labeled cells of nucleus reuniens. At the light microscopic level, we showed that fibers from the medial prefrontal cortex form multiple putative synaptic contacts with dendrites of hippocampally projecting neurons throughout the extent of nucleus reuniens. At ultrastructural level, we showed that medial prefrontal cortical fibers form asymmetric contacts predominantly with dendritic shafts of hippocampally projecting reuniens cells. These findings indicate that nucleus reuniens represents a critical link between the medial prefrontal cortex and the hippocampus. We discuss the possibility that nucleus reuniens gates the flow of information between the medial prefrontal cortex and hippocampus dependent upon attentive/arousal states of the organism.


Asunto(s)
Hipocampo/ultraestructura , Núcleos Talámicos de la Línea Media/ultraestructura , Vías Nerviosas/ultraestructura , Neuronas/ultraestructura , Corteza Prefrontal/ultraestructura , Animales , Mapeo Encefálico , Dendritas/fisiología , Dendritas/ultraestructura , Hipocampo/fisiología , Masculino , Memoria a Corto Plazo/fisiología , Núcleos Talámicos de la Línea Media/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Fitohemaglutininas , Corteza Prefrontal/fisiología , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Ratas , Ratas Sprague-Dawley , Estilbamidinas , Membranas Sinápticas/fisiología , Membranas Sinápticas/ultraestructura
17.
J Comp Neurol ; 525(1): 116-139, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27213991

RESUMEN

As is well recognized, serotonergic (5-HT) fibers distribute widely throughout the forebrain, including the amygdala. Although a few reports have examined the 5-HT innervation of select nuclei of the amygdala in the rat, no previous report has described overall 5-HT projections to the amygdala in the rat. Using immunostaining for the serotonin transporter, SERT, we describe the complete pattern of distribution of 5-HT fibers to the amygdala (proper) and to the extended amygdala in the rat. Based on its ontogenetic origins, the amygdala was subdivided into two major parts, pallial and subpallial components, with the pallial component further divided into superficial and deep nuclei (Olucha-Bordonau et al. 2015). SERT+ fibers were shown to distributed moderately to densely to the deep and cortical pallial nuclei, but, by contrast, lightly to the subpallial nuclei. Specifically, 1) of the deep pallial nuclei, the lateral, basolateral, and basomedial nuclei contained a very dense concentration of 5-HT fibers; 2) of the cortical pallial nuclei, the anterior cortical and amygdala-cortical transition zone rostrally and the posteromedial and posterolateral nuclei caudally contained a moderate concentration of 5-HT fibers; and 3) of the subpallial nuclei, the anterior nuclei and the rostral part of the medial (Me) nuclei contained a moderate concentration of 5-HT fibers, whereas caudal regions of Me as well as the central nuclei and the intercalated nuclei contained a sparse/light concentration of 5-HT fibers. With regard to the extended amygdala (primarily the bed nucleus of stria terminalis; BST), on the whole, the BST contained moderate numbers of 5-HT fibers, spread fairly uniformly throughout BST. The findings are discussed with respect to a critical serotonergic influence on the amygdala, particularly on the basal complex, and on the extended amygdala in the control of states of fear and anxiety. J. Comp. Neurol. 525:116-139, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Amígdala del Cerebelo/citología , Ratas Sprague-Dawley/anatomía & histología , Neuronas Serotoninérgicas/citología , Amígdala del Cerebelo/metabolismo , Animales , Femenino , Inmunohistoquímica , Masculino , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Fotomicrografía , Proteínas de Unión al ARN/metabolismo , Ratas Sprague-Dawley/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Neuronas Serotoninérgicas/metabolismo
18.
J Comp Neurol ; 499(5): 768-96, 2006 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-17048232

RESUMEN

The nucleus reuniens (RE) is the largest of the midline nuclei of the thalamus and exerts strong excitatory actions on the hippocampus and medial prefrontal cortex. Although RE projections to the hippocampus have been well documented, no study using modern tracers has examined the totality of RE projections. With the anterograde anatomical tracer Phaseolus vulgaris leuccoagglutinin, we examined the efferent projections of RE as well as those of the rhomboid nucleus (RH) located dorsal to RE. Control injections were made in the central medial nucleus (CEM) of the thalamus. We showed that the output of RE is almost entirely directed to the hippocampus and "limbic" cortical structures. Specifically, RE projects strongly to the medial frontal polar, anterior piriform, medial and ventral orbital, anterior cingulate, prelimbic, infralimbic, insular, perirhinal, and entorhinal cortices as well as to CA1, dorsal and ventral subiculum, and parasubiculum of the hippocampus. RH distributes more widely than RE, that is, to several RE targets but also significantly to regions of motor, somatosensory, posterior parietal, retrosplenial, temporal, and occipital cortices; to nucleus accumbens; and to the basolateral nucleus of amygdala. The ventral midline thalamus is positioned to exert significant control over fairly widespread regions of the cortex (limbic, sensory, motor), hippocampus, dorsal and ventral striatum, and basal nuclei of the amygdala, possibly to coordinate limbic and sensorimotor functions. We suggest that RE/RH may represent an important conduit in the exchange of information between subcortical-cortical and cortical-cortical limbic structures potentially involved in the selection of appropriate responses to specific and changing sets of environmental conditions.


Asunto(s)
Vías Eferentes/anatomía & histología , Núcleos Talámicos de la Línea Media/anatomía & histología , Animales , Corteza Cerebral/anatomía & histología , Hipocampo/anatomía & histología , Inmunohistoquímica , Masculino , Ratas , Ratas Sprague-Dawley
19.
Neuroscience ; 142(1): 1-20, 2006 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16887277

RESUMEN

The medial prefrontal cortex (mPFC) participates in several higher order functions including selective attention, visceromotor control, decision making and goal-directed behaviors. We discuss the role of the infralimbic cortex (IL) in visceromotor control and the prelimbic cortex (PL) in cognition and their interactions in goal-directed behaviors in the rat. The PL strongly interconnects with a relatively small group of structures that, like PL, subserve cognition, and together have been designated the 'PL circuit.' These structures primarily include the hippocampus, insular cortex, nucleus accumbens, basolateral nucleus of the amygdala, the mediodorsal and reuniens nuclei of the thalamus and the ventral tegmental area of the midbrain. Lesions of each of these structures, like those of PL, produce deficits in delayed response tasks and memory. The PL (and ventral anterior cingulate cortex) (AC) of rats is ideally positioned to integrate current and past information, including its affective qualities, and act on it through its projections to the ventral striatum/ventral pallidum. We further discuss the role of nucleus reuniens of thalamus as a major interface between the mPFC and the hippocampus, and as a prominent source of afferent limbic information to the mPFC and hippocampus. We suggest that the IL of rats is functionally homologous to the orbitomedial cortex of primates and the prelimbic (and ventral AC) cortex to the lateral/dorsolateral cortex of primates, and that the IL/PL complex of rats exerts significant control over emotional and cognitive aspects of goal-directed behavior.


Asunto(s)
Cognición/fisiología , Emociones/fisiología , Hipocampo/fisiología , Corteza Prefrontal/fisiología , Tálamo/fisiología , Animales , Conducta Animal , Vías Nerviosas/fisiología , Ratas
20.
Brain Res ; 1649(Pt A): 110-122, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27544424

RESUMEN

The nucleus reuniens (RE) of the ventral midline thalamus is strongly reciprocally connected with the hippocampus (HF) and the medial prefrontal cortex (mPFC) and has been shown to mediate the transfer of information between these structures. It has become increasingly well established that RE serves a critical role in mnemonic tasks requiring the interaction of the HF and mPFC, but essentially not tasks relying solely on the HF. Very few studies have addressed the independent actions of RE on prefrontal executive functioning. The present report examined the effects of lesions of the ventral midline thalamus, including RE and the dorsally adjacent rhomboid nucleus (RH) in rats on attention and behavioral flexibility using the attentional set shifting task (AST). The task uses odor and tactile stimuli to test for attentional set formation, attentional set shifting, behavioral flexibility and reversal learning. By comparison with sham controls, lesioned rats were significantly impaired on reversal learning and intradimensional (ID) set shifting. Specifically, RE/RH lesioned rats were impaired on the first reversal stage of the task which required a change in response strategy to select a previously non-rewarded stimulus for reward. RE/RH lesioned rats also exhibited deficits in the ability to transfer or generalize rules of the task which requires making the same modality-based choices (e.g., odor vs. tactile) to different sets of stimuli in the ID stage of the task. These results demonstrate that in addition to its role in tasks dependent on HF-mPFC interactions, nucleus reuniens is also critically involved cognitive/executive functions associated with the medial prefrontal cortex. As such, the deficits in the AST task produced by RE/RH lesions suggest the ventral midline thalamus directly contributes to flexible goal directed behavior.


Asunto(s)
Atención/fisiología , Aprendizaje Inverso/fisiología , Olfato/fisiología , Tacto/fisiología , Núcleos Talámicos Ventrales/patología , Núcleos Talámicos Ventrales/fisiología , Animales , Masculino , Odorantes , Desempeño Psicomotor/fisiología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA