RESUMEN
PURPOSE: We report the diagnostic yield of whole-exome sequencing (WES) in 3,040 consecutive cases at a single clinical laboratory. METHODS: WES was performed for many different clinical indications and included the proband plus two or more family members in 76% of cases. RESULTS: The overall diagnostic yield of WES was 28.8%. The diagnostic yield was 23.6% in proband-only cases and 31.0% when three family members were analyzed. The highest yield was for patients who had disorders involving hearing (55%, N = 11), vision (47%, N = 60), the skeletal muscle system (40%, N = 43), the skeletal system (39%, N = 54), multiple congenital anomalies (36%, N = 729), skin (32%, N = 31), the central nervous system (31%, N = 1,082), and the cardiovascular system (28%, N = 54). Of 2,091 cases in which secondary findings were analyzed for 56 American College of Medical Genetics and Genomics-recommended genes, 6.2% (N = 129) had reportable pathogenic variants. In addition to cases with a definitive diagnosis, in 24.2% of cases a candidate gene was reported that may later be reclassified as being associated with a definitive diagnosis. CONCLUSION: Our experience with our first 3,040 WES cases suggests that analysis of trios significantly improves the diagnostic yield compared with proband-only testing for genetically heterogeneous disorders and facilitates identification of novel candidate genes.Genet Med 18 7, 696-704.
Asunto(s)
Enfermedades Genéticas Congénitas/genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Exoma/genética , Enfermedades Genéticas Congénitas/clasificación , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/epidemiología , Humanos , Mutación , Análisis de Secuencia de ADN/métodosRESUMEN
Neurodegeneration with brain iron accumulation (NBIA) encompasses a heterogeneous group of inherited progressive neurological diseases. Beta-propeller protein-associated neurodegeneration (BPAN) has been estimated to account for ~7% of all cases of NBIA and has distinctive clinical and brain imaging findings. Heterozygous variants in the WDR45 gene located in Xp11.23 are responsible for BPAN. A clear female predominance supports an X-linked dominant pattern of inheritance with proposed lethality for germline variants in hemizygous males. By whole-exome sequencing, we identified an in-frame deletion in the WDR45 gene (c.161_163delTGG) in the hemizygous state in a 20-year-old man with a history of profound neurocognitive impairment and seizures. His higher functioning 14-year-old sister, also with a history of intellectual disability, was found to carry the same variant in the heterozygous state. Their asymptomatic mother was mosaic for the alteration. From this pair of siblings with BPAN we conclude that: (1) inherited WDR45 variants are possible, albeit rare; (2) hemizygous germline variants in males can be viable, but likely result in a more severe phenotype; (3) for siblings with germline variants, males should be more significantly affected than females; and (4) because gonadal and germline mosaicism are possible and healthy female carriers can be found, parental testing for variants in WDR45 should be considered.