Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047840

RESUMEN

In this study, we applied an inductively coupled, radio frequency oxygen plasma to maize seeds and investigated its effects on seedling emergence, plant number at tasseling, and crop yield of maize in realistic field conditions. Maize seeds of seven different hybrids were treated over two harvest years. In addition to plasma-treated seeds, a control sample, fungicide-treated seeds, an eco-layer, and a plasma and eco-layer combination, were planted. Seedling emergence, plant number at tasseling (plants/m2), and yield (kg/ha), were recorded. In the first harvest year, results were negatively affected by the presence of an insect pest. In the second harvest year, plant number and yield results were more uniform. In both years, for two and three hybrids, respectively, the highest yield arose from plants from plasma-treated seeds, but the differences were only partially significant. Considering our results, plasma treatment of maize seeds appears to have a positive effect on the yield of the plant.


Asunto(s)
Germinación , Control de Insectos , Oxígeno , Gases em Plasma , Semillas , Zea mays , Germinación/efectos de los fármacos , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Gases em Plasma/farmacología , Oxígeno/farmacología
2.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499399

RESUMEN

A method for the immobilization of an antibacterial chitosan coating to polymeric urinary medical catheters is presented. The method comprises a two-step plasma-treatment procedure, followed by the deposition of chitosan from the water solution. In the first plasma step, the urinary catheter is treated with vacuum-ultraviolet radiation to break bonds in the polymer surface film and create dangling bonds, which are occupied by hydrogen atoms. In the second plasma step, polymeric catheters are treated with atomic oxygen to form oxygen-containing surface functional groups acting as binding sites for chitosan. The presence of oxygen functional groups also causes a transformation of the hydrophobic polymer surface to hydrophilic, thus enabling uniform wetting and improved adsorption of the chitosan coating. The wettability was measured by the sessile-drop method, while the surface composition and structure were measured by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. Non-treated samples did not exhibit successful chitosan immobilization. The effect of plasma treatment on immobilization was explained by noncovalent interactions such as electrostatic interactions and hydrogen bonds.


Asunto(s)
Quitosano , Quitosano/química , Catéteres Urinarios , Rayos Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Polímeros , Oxígeno
3.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35806443

RESUMEN

Surface coatings of materials by polysaccharide polymers are an acknowledged strategy to modulate interfacial biocompatibility. Polysaccharides from various algal species represent an attractive source of structurally diverse compounds that have found application in the biomedical field. Furcellaran obtained from the red algae Furcellaria lumbricalis is a potential candidate for biomedical applications due to its gelation properties and mechanical strength. In the present study, immobilization of furcellaran onto polyethylene terephthalate surfaces by a multistep approach was studied. In this approach, N-allylmethylamine was grafted onto a functionalized polyethylene terephthalate (PET) surface via air plasma treatment. Furcellaran, as a bioactive agent, was anchored on such substrates. Surface characteristics were measured by means of contact angle measurements, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Subsequently, samples were subjected to selected cell interaction assays, such as antibacterial activity, anticoagulant activity, fibroblasts and stem cell cytocompatibility, to investigate the Furcellaran potential in biomedical applications. Based on these results, furcellaran-coated PET films showed significantly improved embryonic stem cell (ESC) proliferation compared to the initial untreated material.


Asunto(s)
Alginatos , Tereftalatos Polietilenos , Antibacterianos/farmacología , Gomas de Plantas , Tereftalatos Polietilenos/química , Polímeros/química , Propiedades de Superficie
4.
Molecules ; 27(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558196

RESUMEN

Plasma methods are often employed for the desired wettability and soaking properties of polymeric textiles, but the exact mechanisms involved in plasma-textile interactions are yet to be discovered. This review presents the fundamentals of plasma penetration into textiles and illustrates mechanisms that lead to the appropriate surface finish of fibers inside the textile. The crucial relations are provided, and the different concepts of low-pressure and atmospheric-pressure discharges useful for the modification of textile's properties are explained. The atmospheric-pressure plasma sustained in the form of numerous stochastical streamers will penetrate textiles of reasonable porosity, so the reactive species useful for the functionalization of fibers deep inside the textile will be created inside the textile. Low-pressure plasmas sustained at reasonable discharge power will not penetrate into the textile, so the depth of the modified textile is limited by the diffusion of reactive species. Since the charged particles neutralize on the textile surface, the neutral species will functionalize the fibers deep inside the textile when low-pressure plasma is chosen for the treatment of textiles.

5.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206400

RESUMEN

Seeds of common bean (Phaseolus vulgaris L.), of the Etna variety, were treated with low-pressure oxygen plasma sustained by an inductively coupled radiofrequency discharge in the H-mode for a few seconds. The high-intensity treatment improved seed health in regard to fungal contamination. Additionally, it increased the wettability of the bean seeds by altering surface chemistry, as established by X-ray photoelectron spectroscopy, and increasing surface roughness, as seen with a scanning electron microscope. The water contact angle at the seed surface dropped to immeasurably low values after a second of plasma treatment. Hydrophobic recovery within a month returned those values to no more than half of the original water contact angle, even for beans treated for the shortest time (0.5 s). Increased wettability resulted in accelerated water uptake. The treatment increased the bean radicle length, which is useful for seedling establishment in the field. These findings confirm that even a brief plasma treatment is a useful technique for the disinfection and stimulation of radicle growth. The technique is scalable to large systems due to the short treatment times.


Asunto(s)
Germinación/efectos de los fármacos , Phaseolus/efectos de los fármacos , Phaseolus/crecimiento & desarrollo , Gases em Plasma/farmacología , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Espectroscopía de Fotoelectrones , Desarrollo de la Planta/efectos de los fármacos , Semillas/ultraestructura , Propiedades de Superficie , Agua , Humectabilidad
6.
Int J Mol Sci ; 21(2)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941018

RESUMEN

In this research, antimicrobial polysaccharide chitosan was used as a surface coating for packaging material. The aim of our research was to establish an additive formulation of chitosan and antioxidative plant extracts as dispersion of nanoparticles. Chitosan nanoparticles with embedded thyme, rosemary and cinnamon extracts were synthesized, and characterized for this purpose. Two representative, commercially used foils, polypropylene (PP) and polyethylene (PE), previously activated by UV/ozone to improve coating adhesion, were functionalized using chitosan-extracts nanoparticle dispersions. The foils were coated by two layers. A solution of macromolecular chitosan was applied onto foils as a first layer, followed by the deposition of various extracts embedded into chitosan nanoparticles that were attached as an upper layer. Since active packaging must assure bioactive efficiency at the interface with food, it is extremely important to understand the surface characteristics and phenomena of functionalized foils. The physico-chemical analyses of functionalized foils were thus comprised of surface elemental composition, surface charge, wettability, as well as surface morphology. It has been shown that coatings were applied successfully with an elemental composition, surface charge and morphology that should enable coating stability, homogeneity and consequently provide an active concept of the packaging surface in contact with food. Moreover, the wettability of foils was improved in order to minimize the anti-fogging behavior.


Asunto(s)
Quitosano/química , Polifenoles/química , Embalaje de Productos , Humectabilidad , Coloides
7.
Sensors (Basel) ; 19(15)2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31387298

RESUMEN

This work reports the development of ultralight interwoven ultrathin graphitic carbon nitride (g-CN) nanosheets for use as a potential adsorbent in a passive sampler (PAS) designed to bind Hg2+ ions. The g-CN nanosheets were prepared from bulk g-CN synthesised via a modified high-temperature short-time (HTST) polycondensation process. The crystal structure, surface functional groups, and morphology of the g-CN nanosheets were characterised using a battery of instruments. The results confirmed that the as-synthesized product is composed of few-layered nanosheets. The adsorption efficiency of g-CN for binding Hg2+ (100 ng mL-1) in sea, river, rain, and Milli-Q quality water was 89%, 93%, 97%, and 100%, respectively, at natural pH. Interference studies found that the cations tested (Co2+, Ca2+, Zn2+, Fe2+, Mn2+, Ni2+, Bi3+, Na+, and K+) had no significant effect on the adsorption efficiency of Hg2+. Different parameters were optimised to improve the performance of g-CN such as pH, contact time, and amount of adsorbent. Optimum conditions were pH 7, 120 min incubation time and 10 mg of nanosheets. The yield of nanosheets was 72.5%, which is higher compared to other polycondensation processes using different monomers. The g-CN sheets could also be regenerated up to eight times with only a 20% loss in binding efficiency. Overall, nano-knitted g-CN is a promising low-cost green adsorbent for use in passive samplers or as a transducing material in sensor applications.

8.
Int J Mol Sci ; 15(8): 14684-96, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25196604

RESUMEN

Alginic acid coated polyethylene films were examined in terms of surface properties and bacteriostatic performance against two most representative bacterial strains, that is, Escherichia coli and Staphylococcus aureus. Microwave plasma treatment followed by brush formation in vapor state from three distinguished precursors (allylalcohol, allylamine, hydroxyethyl methacrylate) was carried out to deposit alginic acid on the substrate. Surface analyses via various techniques established that alginic acid was immobilized onto the surface where grafting (brush) chemistry influenced the amount of alginic acid coated. Moreover, alginic acid was found to be capable of bacterial growth inhibition which itself was significantly affected by the brush type. The polyanionic character of alginic acid as a carbohydrate polymer was assumed to play the pivotal role in antibacterial activity. The cell wall composition of two bacterial strains along with the substrates physicochemical properties accounted for different levels of bacteriostatic performance.


Asunto(s)
Alginatos/química , Antibacterianos/química , Antibacterianos/farmacología , Polietileno/química , Escherichia coli/efectos de los fármacos , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos
9.
Polymers (Basel) ; 16(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38794574

RESUMEN

The wettability of polymers is usually inadequate to ensure the appropriate spreading of polar liquids and thus enable the required adhesion of coatings. A standard ecologically benign method for increasing the polymer wettability is a brief treatment with a non-equilibrium plasma rich in reactive oxygen species and predominantly neutral oxygen atoms in the ground electronic state. The evolution of the surface wettability of selected aromatic polymers was investigated by water droplet contact angles deposited immediately after exposing polymer samples to fluxes of oxygen atoms between 3 × 1020 and 1 × 1023 m-2s-1. The treatment time varied between 0.01 and 1000 s. The wettability evolution versus the O-atom fluence for all aromatic polymers followed similar behavior regardless of the flux of O atoms or the type of polymer. In the range of fluences between approximately 5 × 1020 and 5 × 1023 m-2, the water contact angle decreased exponentially with increasing fluence and dropped to 1/e of the initial value after receiving the fluence close to 5 × 1022 m-2.

10.
Nanomaterials (Basel) ; 14(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38921899

RESUMEN

Carbon deposits consisting of vertically oriented multilayer graphene sheets on metallic foils represent an interesting alternative to activated carbon in electrical and electrochemical devices such as super-capacitors because of the superior electrical conductivity of graphene and huge surface-mass ratio. The graphene sheets were deposited on cobalt foils by plasma-enhanced chemical vapor deposition using propane as the carbon precursor. Plasma was sustained by an inductively coupled radiofrequency discharge in the H mode at a power of 500 W and a propane pressure of 17 Pa. The precursor effectively dissociated in plasma conditions and enabled the growth of porous films consisting of multilayer graphene sheets. The deposition rate varied with time and peaked at 100 nm/s. The evolution of surface wettability was determined by the sessile drop method. The untreated substrates were moderately hydrophobic at a water contact angle of about 110°. The contact angle dropped to about 50° after plasma treatment for less than a second and increased monotonously thereafter. The maximal contact angle of 130° appeared at a treatment time of about 30 s. Thereafter, it slowly decreased, with a prolonged deposition time. The evolution of the wettability was explained by surface composition and morphology. A brief treatment with oxygen plasma enabled a super-hydrophilic surface finish of the films consisting of multilayer graphene sheets.

11.
Carbohydr Polym ; 343: 122469, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174090

RESUMEN

Examining the critical role of anticoagulants in medical practice, particularly their central function in preventing abnormal blood clotting, is of the utmost importance. However, the study of interactions between blood proteins and alternative anticoagulant nano-surfaces is still understood poorly. In this study, novel approach involving direct functionalisation of magnetic iron oxide nanoparticles (MNPs) as carriers with sulphated dextran (s-dext) is presented, with the aim of evaluating the potential of magnetically-responsive MNPs@s-dext as anticoagulants. The physicochemical characterisation of the synthesised MNPs@s-dext includes crystal structure analysis, morphology study, surface and electrokinetic properties, thermogravimetric analysis and magnetic properties` evaluation, which confirms the successful preparation of the nanocomposite with sulfonate groups. The anticoagulant potential of MNPs@s-dext was investigated using a standardised activated partial thromboplastin time (APTT) test and a modified APTT test with a quartz crystal microbalance with dissipation (QCM-D) which confirmed the anticoagulant effect. Time-resolved solid-liquid interactions between the MNPs@s-dext and model blood proteins bovine serum albumin and fibrinogen were also investigated, to gain insight into their hemocompatibility, and revealed protein-repellence of MNPs@s-dext against blood proteins. The study also addressed comprehensive cytotoxicity studies of prepared nanocomposites, and provided valuable insights into potential applicability of MNPs@s-dext as a promising magnetic anticoagulant in biomedical contexts.


Asunto(s)
Anticoagulantes , Sulfato de Dextran , Nanocompuestos , Anticoagulantes/farmacología , Anticoagulantes/química , Humanos , Nanocompuestos/química , Nanocompuestos/toxicidad , Sulfato de Dextran/química , Albúmina Sérica Bovina/química , Coagulación Sanguínea/efectos de los fármacos , Nanopartículas Magnéticas de Óxido de Hierro/química , Nanopartículas Magnéticas de Óxido de Hierro/toxicidad , Animales , Compuestos Férricos/química , Compuestos Férricos/farmacología , Fibrinógeno/química , Supervivencia Celular/efectos de los fármacos , Tiempo de Tromboplastina Parcial , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidad
12.
Carbohydr Polym ; 342: 122374, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048223

RESUMEN

Jute fibers are characterized by a heterogeneous chemical composition (cellulose and non-cellulosic components) and a complex layered structure with a hydrophobic surface outer layer responsible for their low wettability. In this work, after the removal of water-soluble components, raw jute fibers were subjected to atmospheric pressure dielectric barrier discharge (DBD) under different conditions (at 150 or 300 Hz) to tailor jute fiber surface structure and wettability. The research was focused on the aging effect during natural aging in a standard atmosphere investigated up to three weeks after DBD treatment. Alterations in the surface morphology of DBD-treated jute fibers were investigated by FE-SEM and AFM, while ATR-FTIR, XPS, and electrokinetic measurements were used to assess the changes in the jute fiber surface chemistry. Sorption properties were monitored through wetting time and capillary rise measurements. The sorption properties of DBD-treated jute fibers were improved (about 100 times lower wetting time and 15 % higher capillary rise height in comparison to untreated) due to the changes in surface chemistry (decreased lignin and hemicellulose content in parallel with cellulose oxidation) and morphology (about 4.6 times higher average roughness). The electrokinetic and sorption properties measurement confirmed the significance of aging effects in lignocellulosic fibers' functionalization using plasma.

13.
Int J Biol Macromol ; 270(Pt 2): 132308, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740163

RESUMEN

UV-ozone activated polypropylene (PP) food films were subjected to a novel bilayer coating process involving primary or quaternary chitosan (CH/QCH) as the first layer and natural extracts from juniper needles (Juniperus oxycedrus; JUN) or blackberry leaves (Rubus fruticosus; BBL) as the second layer. This innovative approach aims to redefine active packaging (AP) development. Through a detailed analysis by surface characterization and bioactivity assessments (i.e., antioxidant and antimicrobial functionalities), we evaluated different coating combinations. Furthermore, we investigated the stability and barrier characteristics inherent in these coatings. The confirmed deposition, coupled with a comprehensive characterization of their composition and morphology, underscored the efficacy of the coatings. Our investigation included wettability assessment via contact angle (CA) measurements, X-ray photoelectron spectroscopy (XPS), and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), which revealed substantial enhancements in surface concentrations of elements and functional groups of CH, QCH, JUN, and BBL. Scanning electron microscopy (SEM) unveiled the coatings' heterogeneity, while time-of-flight secondary ion mass spectrometry (ToF-SIMS) and CA profiling showed moderately compact bilayers on PP, providing active species on the hydrophilic surface, respectively. The coatings significantly reduced the oxygen permeability. Additionally, single-layer depositions of CH and QCH remained below the overall migration limit (OML). Remarkably, the coatings exhibited robust antioxidative properties due to plant extracts and exceptional antimicrobial activity against S. aureus, attributed to QCH. These findings underscore the pivotal role of film surface properties in governing bioactive characteristics and offer a promising pathway for enhancing food packaging functionality.


Asunto(s)
Quitosano , Embalaje de Alimentos , Extractos Vegetales , Polipropilenos , Quitosano/química , Quitosano/farmacología , Polipropilenos/química , Embalaje de Alimentos/métodos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Juniperus/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Rubus/química , Propiedades de Superficie , Humectabilidad
14.
Nanomaterials (Basel) ; 14(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38334554

RESUMEN

The present study focuses on correlations between three parameters: (1) graphite particle size, (2) the ratio of graphite to oxidizing agent (KMnO4), and (3) the ratio of graphite to acid (H2SO4 and H3PO4), with the reaction yield, structure, and properties of graphene oxide (GO). The correlations are a challenge, as these three parameters can hardly be separated from each other due to the variations in the viscosity of the system. The larger the graphite particles, the higher the viscosity of GO. Decreasing the ratio of graphite to KMnO4 from 1:4 to 1:6 generally leads to a higher degree of oxidation and a higher reaction yield. However, the differences are very small. Increasing the graphite-to-acid-volume ratio from 1 g/60 mL to 1 g/80 mL, except for the smallest particles, reduced the degree of oxidation and slightly reduced the reaction yield. However, the reaction yield mainly depends on the extent of purification of GO by water, not on the reaction conditions. The large differences in the thermal decomposition of GO are mainly due to the bulk particle size and less to other parameters.

15.
Polymers (Basel) ; 16(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38475404

RESUMEN

This study involved the creation of highly porous PLA scaffolds through the porogen/leaching method, utilizing polyethylene glycol as a porogen with a 75% mass ratio. The outcome achieved a highly interconnected porous structure with a thickness of 25 µm. To activate the scaffold's surface and improve its hydrophilicity, radiofrequency (RF) air plasma treatment was employed. Subsequently, furcellaran subjected to sulfation or carboxymethylation was deposited onto the RF plasma treated surfaces with the intention of improving bioactivity. Surface roughness and water wettability experienced enhancement following the surface modification. The incorporation of sulfate/carboxymethyl group (DS = 0.8; 0.3, respectively) is confirmed by elemental analysis and FT-IR. Successful functionalization of PLA scaffolds was validated by SEM and XPS analysis, showing changes in topography and increases in characteristic elements (N, S, Na) for sulfated (SF) and carboxymethylated (CMF). Cytocompatibility was evaluated by using mouse embryonic fibroblast cells (NIH/3T3).

16.
Polymers (Basel) ; 16(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38543394

RESUMEN

Cellulose is an abundant natural polymer and is thus promising for enforcing biobased plastics. A broader application of cellulose fibers as a filler in polymer composites is limited because of their hydrophilicity and hygroscopicity. The recent scientific literature on plasma methods for the hydrophobization of cellulose materials is reviewed and critically evaluated. All authors focused on the application of plasmas sustained in fluorine or silicon-containing gases, particularly tetrafluoromethane, and hexamethyldisiloxane. The cellulose materials should be pre-treated with another plasma (typically oxygen) for better adhesion of the silicon-containing hydrophobic coating. In contrast, deposition of fluorine-containing coatings does not require pre-treatment, which is explained by mild etching of the cellulose upon treatment with F atoms and ions. The discrepancy between the results reported by different authors is explained by details in the gas phase and surface kinetics, including the heating of samples due to exothermic surface reactions, desorption of water vapor, competition between etching and deposition, the influence of plasma radiation, and formation of dusty plasma. Scientific and technological challenges are highlighted, and the directions for further research are provided.

17.
Radiol Oncol ; 58(2): 279-288, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38452387

RESUMEN

BACKGROUND: Intraoperative fluid management is a crucial aspect of cancer surgery, including colorectal surgery and pancreatoduodenectomy. The study tests if intraoperative multimodal monitoring reduces postoperative morbidity and duration of hospitalisation in patients undergoing major abdominal surgery treated by the same anaesthetic protocols with epidural analgesia. PATIENTS AND METHODS: A prospective study was conducted in 2 parallel groups. High-risk surgical patients undergoing major abdominal surgery were randomly selected in the control group (CG), where standard monitoring was applied (44 patients), and the protocol group (PG), where cerebral oxygenation and extended hemodynamic monitoring were used with the protocol for intraoperative interventions (44 patients). RESULTS: There were no differences in the median length of hospital stay, CG 9 days (interquartile range [IQR] 8 days), PG 9 (5.5), p = 0.851. There was no difference in postoperative renal of cardiac impairment. Procalcitonin was significantly higher (highest postoperative value in the first 3 days) in CG, 0.75 mcg/L (IQR 3.19 mcg/L), than in PG, 0.3 mcg/L (0.88 mcg/L), p = 0.001. PG patients received a larger volume of intraoperative fluid; median intraoperative fluid balance +1300 ml (IQR 1063 ml) than CG; +375 ml (IQR 438 ml), p < 0.001. CONCLUSIONS: There were significant differences in intraoperative fluid management and vasopressor use. The median postoperative value of procalcitonin was significantly higher in CG, suggesting differences in immune response to tissue trauma in different intraoperative fluid status, but there was no difference in postoperative morbidity or hospital stay.


Asunto(s)
Fluidoterapia , Cuidados Intraoperatorios , Tiempo de Internación , Complicaciones Posoperatorias , Humanos , Fluidoterapia/métodos , Masculino , Femenino , Estudios Prospectivos , Anciano , Tiempo de Internación/estadística & datos numéricos , Persona de Mediana Edad , Cuidados Intraoperatorios/métodos , Complicaciones Posoperatorias/prevención & control , Neoplasias Abdominales/cirugía , Monitoreo Intraoperatorio/métodos , Pancreaticoduodenectomía , Polipéptido alfa Relacionado con Calcitonina/sangre , Analgesia Epidural/métodos , Resultado del Tratamiento
18.
Molecules ; 18(10): 12441-63, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24152668

RESUMEN

Protein adhesion and cell response to plasma-treated polymer surfaces were studied. The polymer polyethylene terephthalate (PET) was treated in either an oxygen plasma to make the surface hydrophilic, or a tetrafluoromethane CF(4) plasma to make the surface hydrophobic. The plasma source was radiofrequency (RF) discharge. The adsorption of albumin and other proteins from a cell-culture medium onto these surfaces was studied using a quartz crystal microbalance (QCM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The cellular response to plasma-treated surfaces was studied as well using an MTT assay and scanning electron microscopy (SEM). The fastest adsorption rate was found on the hydrophilic oxygen plasma-treated sample, and the lowest was found on the pristine untreated sample. Additionally, the amount of adsorbed proteins was higher for the oxygen-plasma-treated surface, and the adsorbed layer was more viscoelastic. In addition, cell adhesion studies support this finding because the best cell adhesion was observed on oxygen-plasma-treated substrates.


Asunto(s)
Proteínas Inmovilizadas/química , Oxígeno/química , Tereftalatos Polietilenos/química , Adsorción , Albúminas/química , Adhesión Celular , Línea Celular Tumoral , Forma de la Célula , Materiales Biocompatibles Revestidos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Espectroscopía de Fotoelectrones , Gases em Plasma/química , Tecnicas de Microbalanza del Cristal de Cuarzo , Propiedades de Superficie
19.
Polymers (Basel) ; 15(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36904353

RESUMEN

Materials for biomedical applications often need to be coated to enhance their performance, such as their biocompatibility, antibacterial, antioxidant, and anti-inflammatory properties, or to assist the regeneration process and influence cell adhesion. Among naturally available substances, chitosan meets the above criteria. Most synthetic polymer materials do not enable the immobilization of the chitosan film. Therefore, their surface should be altered to ensure the interaction between the surface functional groups and the amino or hydroxyl groups in the chitosan chain. Plasma treatment can provide an effective solution to this problem. This work aims to review plasma methods for surface modification of polymers for improved chitosan immobilization. The obtained surface finish is explained in view of the different mechanisms involved in treating polymers with reactive plasma species. The reviewed literature showed that researchers usually use two different approaches: direct immobilization of chitosan on the plasma-treated surface or indirect immobilization by additional chemistry and coupling agents, which are also reviewed. Although plasma treatment leads to remarkably improved surface wettability, this was not the case for chitosan-coated samples, where a wide range of wettability was reported ranging from almost superhydrophilic to hydrophobic, which may have a negative effect on the formation of chitosan-based hydrogels.

20.
Materials (Basel) ; 16(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36902889

RESUMEN

Relevant data on heterogeneous surface recombination of neutral oxygen atoms available in the scientific literature are reviewed and discussed for various materials. The coefficients are determined by placing the samples either in non-equilibrium oxygen plasma or its afterglow. The experimental methods used to determine the coefficients are examined and categorized into calorimetry, actinometry, NO titration, laser-induced fluorescence, and various other methods and their combinations. Some numerical models for recombination coefficient determination are also examined. Correlations are drawn between the experimental parameters and the reported coefficients. Different materials are examined and categorized according to reported recombination coefficients into catalytic, semi-catalytic, and inert materials. Measurements from the literature of the recombination coefficients for some materials are compiled and compared, along with the possible system pressure and material surface temperature dependence of the materials' recombination coefficient. A large scattering of results reported by different authors is discussed, and possible explanations are provided.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA