Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Immunity ; 56(9): 2121-2136.e6, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37659412

RESUMEN

Genetic association studies have demonstrated the critical involvement of the microglial immune response in Alzheimer's disease (AD) pathogenesis. Phospholipase C-gamma-2 (PLCG2) is selectively expressed by microglia and functions in many immune receptor signaling pathways. In AD, PLCG2 is induced uniquely in plaque-associated microglia. A genetic variant of PLCG2, PLCG2P522R, is a mild hypermorph that attenuates AD risk. Here, we identified a loss-of-function PLCG2 variant, PLCG2M28L, that confers an increased AD risk. PLCG2P522R attenuated disease in an amyloidogenic murine AD model, whereas PLCG2M28L exacerbated the plaque burden associated with altered phagocytosis and Aß clearance. The variants bidirectionally modulated disease pathology by inducing distinct transcriptional programs that identified microglial subpopulations associated with protective or detrimental phenotypes. These findings identify PLCG2M28L as a potential AD risk variant and demonstrate that PLCG2 variants can differentially orchestrate microglial responses in AD pathogenesis that can be therapeutically targeted.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/genética , Estudios de Asociación Genética , Microglía , Fagocitosis/genética , Fenotipo , Placa Amiloide , Fosfolipasa C gamma/metabolismo
2.
Diabetologia ; 67(1): 170-189, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37712955

RESUMEN

AIMS/HYPOTHESIS: The brain is a major consumer of glucose as an energy source and regulates systemic glucose as well as energy balance. Although glucose transporters such as GLUT2 and sodium-glucose cotransporter 2 (SGLT2) are known to regulate glucose homeostasis and metabolism, the identity of a receptor that binds glucose to activate glucose signalling pathways in the brain is unknown. In this study, we aimed to discover a glucose receptor in the mouse hypothalamus. METHODS: Here we used a high molecular mass glucose-biotin polymer to enrich glucose-bound mouse hypothalamic neurons through cell-based affinity chromatography. We then subjected the enriched neurons to proteomic analyses and identified adhesion G-protein coupled receptor 1 (ADGRL1) as a top candidate for a glucose receptor. We validated glucose-ADGRL1 interactions using CHO cells stably expressing human ADGRL1 and ligand-receptor binding assays. We generated and determined the phenotype of global Adgrl1-knockout mice and hypothalamus-specific Adgrl1-deficient mice. We measured the variables related to glucose and energy homeostasis in these mice. We also generated an Adgrl1Cre mouse model to investigate the role of ADGRL1 in sensing glucose using electrophysiology. RESULTS: Adgrl1 is highly expressed in the ventromedial nucleus of the hypothalamus (VMH) in mice. Lack of Adgrl1 in the VMH in mice caused fasting hyperinsulinaemia, enhanced glucose-stimulated insulin secretion and insulin resistance. In addition, the Adgrl1-deficient mice had impaired feeding responses to glucose and fasting coupled with abnormal glucose sensing and decreased physical activity before development of obesity and hyperglycaemia. In female mice, ovariectomy was necessary to reveal the contribution of ADGRL1 to energy and glucose homeostasis. CONCLUSIONS/INTERPRETATION: Altogether, our findings demonstrate that ADGRL1 binds glucose and is involved in energy as well as glucose homeostasis in a sex-dependent manner. Targeting ADGRL1 may introduce a new class of drugs for the treatment of type 2 diabetes and obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Animales , Cricetinae , Femenino , Humanos , Ratones , Cricetulus , Diabetes Mellitus Tipo 2/complicaciones , Metabolismo Energético/genética , Glucosa/metabolismo , Homeostasis/fisiología , Ratones Noqueados , Obesidad/metabolismo , Proteómica
3.
Cereb Cortex ; 33(4): 1014-1043, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35383368

RESUMEN

Area 5 of the parietal cortex is part of the "dorsal stream" cortical pathway which processes visual information for action. The signals that area 5 ultimately conveys to motor cortex, the main area providing output to the spinal cord, are unknown. We analyzed area 5 neuronal activity during vision-independent locomotion on a flat surface and vision-dependent locomotion on a horizontal ladder in cats focusing on corticocortical neurons (CCs) projecting to motor cortex from the upper and deeper cortical layers and compared it to that of neighboring unidentified neurons (noIDs). We found that upon transition from vision-independent to vision-dependent locomotion, the low discharge of CCs in layer V doubled and the proportion of cells with 2 bursts per stride tended to increase. In layer V, the group of 2-bursters developed 2 activity peaks that coincided with peaks of gaze shifts along the surface away from the animal, described previously. One-bursters and either subpopulation in supragranular layers did not transmit any clear unified stride-related signal to the motor cortex. Most CC group activities did not mirror those of their noID counterparts. CCs with receptive fields on the shoulder, elbow, or wrist/paw discharged in opposite phases with the respective groups of pyramidal tract neurons of motor cortex, the cortico-spinal cells.


Asunto(s)
Corteza Motora , Gatos , Animales , Corteza Motora/fisiología , Locomoción/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Lóbulo Parietal , Corteza Somatosensorial/fisiología
4.
J Neurophysiol ; 130(4): 838-860, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37609687

RESUMEN

Visual control of steps is critical in everyday life. Several motor centers are implicated in visual control of steps on a complex surface, however, participation of a large cortical motor area, the premotor cortex, in visual guidance of steps during overground locomotion has not been examined. Here, we analyzed the activity of neurons in feline premotor cortex areas 6aα and 6aγ as cats walked on the flat surface where visual guidance of steps is not needed and stepped on crosspieces of a horizontally placed ladder or over barriers where visual control of steps is required. The comparison of neuronal firing between vision-dependent and vision-independent stepping revealed components of the activity related to visual guidance of steps. We found that the firing activity of 59% of neurons was modulated with the rhythm of strides on the flat surface, and the activity of 83-86% of the population changed upon transition to locomotion on the ladder or with barriers. The firing rate and the depth of the stride-related activity modulation of 33-44% of neurons changed, and the stride phases where neurons preferred to fire changed for 58-73% of neurons. These results indicate that a substantial proportion of areas 6aα and 6aγ neurons is involved in visual guidance of steps. Compared with the primary motor cortex, the proportion of cells, the firing activity of which changed upon transition from vision-independent to vision-dependent stepping, was lower and the preferred phases of the firing activity changed more often between the tasks.NEW & NOTEWORTHY Visual control of steps is critical for daily living, however, how it is achieved is not well understood. Here, we analyzed how neurons in the premotor cortex respond to the demand for visual control of steps on a complex surface. We conclude that premotor cortex neurons participate in the cortical network supporting visual control of steps by modifying the phase, intensity, and salience of their firing activity.


Asunto(s)
Corteza Motora , Gatos , Animales , Neuronas , Locomoción , Caminata
5.
J Neurotrauma ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38818799

RESUMEN

Neurostimulation protocols are increasingly used as therapeutic interventions, including for brain injury. In addition to the direct activation of neurons, these stimulation protocols are also likely to have downstream effects on those neurons' synaptic outputs. It is well known that alterations in the strength of synaptic connections (long-term potentiation, LTP; long-term depression, LTD) are sensitive to the frequency of stimulation used for induction; however, little is known about the contribution of the temporal pattern of stimulation to the downstream synaptic plasticity that may be induced by neurostimulation in the injured brain. We explored interactions of the temporal pattern and frequency of neurostimulation in the normal cerebral cortex and after mild traumatic brain injury (mTBI), to inform therapies to strengthen or weaken neural circuits in injured brains, as well as to better understand the role of these factors in normal brain plasticity. Whole-cell (WC) patch-clamp recordings of evoked postsynaptic potentials in individual neurons, as well as field potential (FP) recordings, were made from layer 2/3 of visual cortex in response to stimulation of layer 4, in acute slices from control (naive), sham operated, and mTBI rats. We compared synaptic plasticity induced by different stimulation protocols, each consisting of a specific frequency (1 Hz, 10 Hz, or 100 Hz), continuity (continuous or discontinuous), and temporal pattern (perfectly regular, slightly irregular, or highly irregular). At the individual neuron level, dramatic differences in plasticity outcome occurred when the highly irregular stimulation protocol was used at 1 Hz or 10 Hz, producing an overall LTD in controls and shams, but a robust overall LTP after mTBI. Consistent with the individual neuron results, the plasticity outcomes for simultaneous FP recordings were similar, indicative of our results generalizing to a larger scale synaptic network than can be sampled by individual WC recordings alone. In addition to the differences in plasticity outcome between control (naive or sham) and injured brains, the dynamics of the changes in synaptic responses that developed during stimulation were predictive of the final plasticity outcome. Our results demonstrate that the temporal pattern of stimulation plays a role in the polarity and magnitude of synaptic plasticity induced in the cerebral cortex while highlighting differences between normal and injured brain responses. Moreover, these results may be useful for optimization of neurostimulation therapies to treat mTBI and other brain disorders, in addition to providing new insights into downstream plasticity signaling mechanisms in the normal brain.

6.
Elife ; 112022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36098397

RESUMEN

How does binge drinking alcohol change synaptic function, and do these changes maintain binge consumption? The anterior insular cortex (AIC) and dorsolateral striatum (DLS) are brain regions implicated in alcohol use disorder. In male, but not female mice, we found that binge drinking alcohol produced glutamatergic synaptic adaptations selective to AIC inputs within the DLS. Photoexciting AIC→DLS circuitry in male mice during binge drinking decreased alcohol, but not water consumption and altered alcohol drinking mechanics. Further, drinking mechanics alone from drinking session data predicted alcohol-related circuit changes. AIC→DLS manipulation did not alter operant, valence, or anxiety-related behaviors. These findings suggest that alcohol-mediated changes at AIC inputs govern behavioral sequences that maintain binge drinking and may serve as a circuit-based biomarker for the development of alcohol use disorder.


Asunto(s)
Alcoholismo , Consumo Excesivo de Bebidas Alcohólicas , Consumo de Bebidas Alcohólicas , Animales , Etanol , Corteza Insular , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Nat Neurosci ; 25(12): 1597-1607, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36344699

RESUMEN

Tau aggregation is a defining histopathological feature of Alzheimer's disease and other tauopathies. However, the cellular mechanisms involved in tau propagation remain unclear. Here, we performed an unbiased quantitative proteomic study to identify proteins that specifically interact with this tau seed. We identified Bassoon (BSN), a presynaptic scaffolding protein, as an interactor of the tau seed isolated from a mouse model of tauopathy, and from Alzheimer's disease and progressive supranuclear palsy postmortem samples. We show that BSN exacerbates tau seeding and toxicity in both mouse and Drosophila models for tauopathy, and that BSN downregulation decreases tau spreading and overall disease pathology, rescuing synaptic and behavioral impairments and reducing brain atrophy. Our findings improve the understanding of how tau seeds can be stabilized by interactors such as BSN. Inhibiting tau-seed interactions is a potential new therapeutic approach for neurodegenerative tauopathies.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Animales , Ratones , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Proteómica , Encéfalo/metabolismo , Tauopatías/metabolismo
8.
Sci Adv ; 7(45): eabe3954, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34731000

RESUMEN

Recently, large-scale human genetics studies identified a rare coding variant in the ABI3 gene that is associated with an increased risk of Alzheimer's disease (AD). However, pathways by which ABI3 contributes to the pathogenesis of AD are unknown. To address this question, we determined whether loss of ABI3 function affects pathological features of AD in the 5XFAD mouse model. We demonstrate that the deletion of Abi3 locus significantly increases amyloid ß (Aß) accumulation and decreases microglia clustering around the plaques. Furthermore, long-term potentiation is impaired in 5XFAD;Abi3 knockout ("Abi3−/−") mice. Moreover, we identified marked changes in the proportion of microglia subpopulations in Abi3−/− mice using a single-cell RNA sequencing approach. Mechanistic studies demonstrate that Abi3 knockdown in microglia impairs migration and phagocytosis. Together, our study provides the first in vivo functional evidence that loss of ABI3 function may increase the risk of developing AD by affecting Aß accumulation and neuroinflammation.

9.
Brain Res Rev ; 57(1): 172-82, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17916380

RESUMEN

The spinal circuitry underlying the generation of basic locomotor synergies has been described in substantial detail in lampreys and the cellular mechanisms have been identified. The initiation of locomotion, on the other hand, relies on supraspinal networks and the cellular mechanisms involved are only beginning to be understood. This review examines some of the findings relative to the neural mechanisms involved in the initiation of locomotion of lampreys. Locomotion can be elicited by sensory stimulation or by internal cues associated with fundamental needs of the animal such as food seeking, exploration, and mating. We have described mechanisms by which escape swimming is elicited in lampreys in response to mechanical skin stimulation. A rather simple neural connectivity is involved, including sensory and relay neurons, as well as the brainstem rhombencephalic reticulospinal cells, which act as command neurons. We have shown that reticulospinal cells have intrinsic membrane properties that allow them to transform a short duration sensory input into a long-lasting excitatory command that activates the spinal locomotor networks. These mechanisms constitute an important feature for the activation of escape swimming. Other sensory inputs can also elicit locomotion in lampreys. For instance, we have recently shown that olfactory signals evoke sustained depolarizations in reticulospinal neurons and chemical activation of the olfactory bulbs with local injections of glutamate induces fictive locomotion. The mechanisms by which internal cues initiate locomotion are less understood. Our research has focused on one particular locomotor center in the brainstem, the mesencephalic locomotor region (MLR). The MLR is believed to channel inputs from many brain regions to generate goal-directed locomotion. It activates reticulospinal cells to elicit locomotor output in a graded fashion contrary to escape locomotor bouts, which are all-or-none. MLR inputs to reticulospinal cells use both glutamatergic and cholinergic transmission; nicotinic receptors on reticulospinal cells are involved. MLR excitatory inputs to reticulospinal cells in the middle (MRRN) are larger than those in the posterior rhombencephalic reticular nucleus (PRRN). Moreover at low stimulation strength, reticulospinal cells in the MRRN are activated first, whereas those in the PRRN require stronger stimulation strengths. The output from the MLR on one side activates reticulospinal neurons on both sides in a highly symmetrical fashion. This could account for the symmetrical bilateral locomotor output evoked during unilateral stimulation of the MLR in all animal species tested to date. Interestingly, muscarinic receptor activation reduces sensory inputs to reticulospinal neurons and, under natural conditions, the activation of MLR cholinergic neurons will likely reduce sensory inflow. Moreover, exposing the brainstem to muscarinic agonists generates sustained recurring depolarizations in reticulospinal neurons through pre-reticular effects. Cells in the caudal half of the rhombencephalon appear to be involved and we propose that the activation of these muscarinoceptive cells could provide additional excitation to reticulospinal cells when the MLR is activated under natural conditions. One important question relates to sources of inputs to the MLR. We found that substance P excites the MLR, whereas GABA inputs tonically maintain the MLR inhibited and removal of this inhibition initiates locomotion. Other locomotor centers exist such as a region in the ventral thalamus projecting directly to reticulospinal cells. This region, referred to as the diencephalic locomotor region, receives inputs from several areas in the forebrain and is likely important for goal-directed locomotion. In summary, this review focuses on the most recent findings relative to initiation of lamprey locomotion in response to sensory and internal cues in lampreys.


Asunto(s)
Lampreas/fisiología , Locomoción/fisiología , Animales , Encéfalo/anatomía & histología , Encéfalo/fisiología , Fenómenos Fisiológicos del Sistema Nervioso , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neuronas/fisiología , Sensación/fisiología
10.
Elife ; 52016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26928234

RESUMEN

Adolescents are especially prone to drug addiction, but the underlying biological basis of their increased vulnerability remains unknown. We reveal that translational control by phosphorylation of the translation initiation factor eIF2α (p-eIF2α) accounts for adolescent hypersensitivity to cocaine. In adolescent (but not adult) mice, a low dose of cocaine reduced p-eIF2α in the ventral tegmental area (VTA), potentiated synaptic inputs to VTA dopaminergic neurons, and induced drug-reinforced behavior. Like adolescents, adult mice with reduced p-eIF2α-mediated translational control were more susceptible to cocaine-induced synaptic potentiation and behavior. Conversely, like adults, adolescent mice with increased p-eIF2α became more resistant to cocaine's effects. Accordingly, metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD)-whose disruption is postulated to increase vulnerability to drug addiction-was impaired in both adolescent mice and adult mice with reduced p-eIF2α mediated translation. Thus, during addiction, cocaine hijacks translational control by p-eIF2α, initiating synaptic potentiation and addiction-related behaviors. These insights may hold promise for new treatments for addiction.


Asunto(s)
Conducta/efectos de los fármacos , Cocaína/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Sinapsis/efectos de los fármacos , Área Tegmental Ventral/fisiología , Animales , Ratones , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA