Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 7(9): e1002265, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21909283

RESUMEN

The mechanisms generating stably differentiated cell-types from multipotent precursors are key to understanding normal development and have implications for treatment of cancer and the therapeutic use of stem cells. Pigment cells are a major derivative of neural crest stem cells and a key model cell-type for our understanding of the genetics of cell differentiation. Several factors driving melanocyte fate specification have been identified, including the transcription factor and master regulator of melanocyte development, Mitf, and Wnt signalling and the multipotency and fate specification factor, Sox10, which drive mitf expression. While these factors together drive multipotent neural crest cells to become specified melanoblasts, the mechanisms stabilising melanocyte differentiation remain unclear. Furthermore, there is controversy over whether Sox10 has an ongoing role in melanocyte differentiation. Here we use zebrafish to explore in vivo the gene regulatory network (GRN) underlying melanocyte specification and differentiation. We use an iterative process of mathematical modelling and experimental observation to explore methodically the core melanocyte GRN we have defined. We show that Sox10 is not required for ongoing differentiation and expression is downregulated in differentiating cells, in response to Mitfa and Hdac1. Unexpectedly, we find that Sox10 represses Mitf-dependent expression of melanocyte differentiation genes. Our systems biology approach allowed us to predict two novel features of the melanocyte GRN, which we then validate experimentally. Specifically, we show that maintenance of mitfa expression is Mitfa-dependent, and identify Sox9b as providing an Mitfa-independent input to melanocyte differentiation. Our data supports our previous suggestion that Sox10 only functions transiently in regulation of mitfa and cannot be responsible for long-term maintenance of mitfa expression; indeed, Sox10 is likely to slow melanocyte differentiation in the zebrafish embryo. More generally, this novel approach to understanding melanocyte differentiation provides a basis for systematic modelling of differentiation in this and other cell-types.


Asunto(s)
Redes Reguladoras de Genes/genética , Histona Desacetilasa 1/genética , Melanocitos/citología , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción SOX9/genética , Factores de Transcripción SOXE/genética , Proteínas de Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/genética , Animales , Diferenciación Celular , Histona Desacetilasa 1/metabolismo , Melanocitos/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Modelos Teóricos , Cresta Neural/citología , Cresta Neural/crecimiento & desarrollo , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción SOXE/metabolismo , Células Madre/citología , Células Madre/metabolismo , Vía de Señalización Wnt/genética , Proteínas de Pez Cebra/metabolismo
2.
Int J Dev Biol ; 62(6-7-8): 491-505, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29938761

RESUMEN

Regeneration and wound healing are complex processes that allow organs and tissues to regain their integrity and functionality after injury. Wound healing, a key property of epithelia, involves tissue closure that in some cases leads to scar formation. Regeneration, a process rather limited in mammals, is the capacity to regrow (parts of) an organ or a tissue, after damage or amputation. What are the properties of organs and the features of tissue permitting functional regrowth and repair? What are the cellular and molecular mechanisms underlying these processes? These questions are crucial both in fundamental and applied contexts, with important medical implications. The mechanisms and cells underlying tissue repair have thus been the focus of intense investigation. The last decades have seen rapid progress in the domain and new models emerging. Here, we review the fundamental advances and the perspectives that the use of C. elegans as a model have brought to the mechanisms of wound healing and cellular plasticity, axon regeneration and transdifferentiation in vivo.


Asunto(s)
Caenorhabditis elegans/fisiología , Plasticidad de la Célula/fisiología , Proliferación Celular/fisiología , Regeneración/fisiología , Cicatrización de Heridas/fisiología , Animales , Axones/fisiología , Caenorhabditis elegans/citología , Transdiferenciación Celular/fisiología , Regeneración Nerviosa/fisiología
3.
Pigment Cell Melanoma Res ; 30(2): 219-232, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27977907

RESUMEN

A role for Wnt signaling in melanocyte specification from neural crest is conserved across vertebrates, but possible ongoing roles in melanocyte differentiation have received little attention. Using a systems biology approach to investigate the gene regulatory network underlying stable melanocyte differentiation in zebrafish highlighted a requirement for a positive-feedback loop involving the melanocyte master regulator Mitfa. Here, we test the hypothesis that Wnt signaling contributes to that positive feedback. We show firstly that Wnt signaling remains active in differentiating melanocytes and secondly that enhanced Wnt signaling drives elevated transcription of mitfa. We show that chemical activation of the Wnt signaling pathway at early stages of melanocyte development enhances melanocyte specification as expected, but importantly that at later (differentiation) stages, it results in altered melanocyte morphology, although melanisation is not obviously affected. Downregulation of Wnt signaling also results in altered melanocyte morphology and organization. We conclude that Wnt signaling plays a role in regulating ongoing aspects of melanocyte differentiation in zebrafish.


Asunto(s)
Diferenciación Celular , Embrión no Mamífero/citología , Regulación del Desarrollo de la Expresión Génica , Melanocitos/citología , Vía de Señalización Wnt , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Animales , Células Cultivadas , Embrión no Mamífero/metabolismo , Redes Reguladoras de Genes , Melanocitos/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética
4.
Science ; 329(5989): 339-42, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20647470

RESUMEN

Annelids and arthropods share a similar segmented organization of the body whose evolutionary origin remains unclear. The Hedgehog signaling pathway, prominent in arthropod embryonic segment patterning, has not been shown to have a similar function outside arthropods. We show that the ligand Hedgehog, the receptor Patched, and the transcription factor Gli are all expressed in striped patterns before the morphological appearance of segments in the annelid Platynereis dumerilii. Treatments with small molecules antagonistic to Hedgehog signaling disrupt segment formation. Platynereis Hedgehog is not necessary to establish early segment patterns but is required to maintain them. The molecular similarity of segment patterning functions of the Hedgehog pathway in an annelid and in arthropods supports a common origin of segmentation in protostomes.


Asunto(s)
Proteínas Hedgehog/metabolismo , Poliquetos/crecimiento & desarrollo , Poliquetos/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Artrópodos/embriología , Artrópodos/genética , Artrópodos/crecimiento & desarrollo , Artrópodos/metabolismo , Evolución Biológica , Tipificación del Cuerpo/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Metamorfosis Biológica , Datos de Secuencia Molecular , Receptores Patched , Filogenia , Piperazinas/farmacología , Poliquetos/anatomía & histología , Poliquetos/genética , Pirazoles/farmacología , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/química , Factores de Transcripción/genética , Alcaloides de Veratrum/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA