Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35328394

RESUMEN

Putrescine (Put) is the starting point of the polyamines (PAs) pathway and the most common PA in higher plants. It is synthesized by two main pathways (from ornithine and arginine), but recently a third pathway from citrulline was reported in sesame plants. There is strong evidence that Put may play a crucial role not only in plant growth and development but also in the tolerance responses to the major stresses affecting crop production. The main strategies to investigate the involvement of PA in plant systems are based on the application of competitive inhibitors, exogenous PAs treatments, and the most efficient approaches based on mutant and transgenic plants. Thus, in this article, the recent advances in understanding the role of this metabolite in plant growth promotion and protection against abiotic and biotic stresses will be discussed to provide an overview for future research.


Asunto(s)
Desarrollo de la Planta , Putrescina , Desarrollo de la Planta/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Poliaminas/metabolismo , Estrés Fisiológico
2.
J Proteome Res ; 20(1): 433-443, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32989989

RESUMEN

The activation of induced resistance in plants may enhance the production of defensive proteins to avoid the invasion of pathogens. In this way, the composition of the apoplastic fluid could represent an important layer of defense that plants can modify to avoid the attack. In this study, we performed a proteomic study of the apoplastic fluid from plants treated with the resistance inducer 1-methyltryptophan (1-MT) as well as infected with Pseudomonas syringae pv. tomato (Pst). Our results showed that both the inoculation with Pst and the application of the inducer provoke changes in the proteomic composition in the apoplast enhancing the accumulation of proteins involved in plant defense. Finally, one of the identified proteins that are overaccumulated upon the treatment have been expressed in Escherichia coli and purified in order to test their antimicrobial effect. The result showed that the tested protein is able to reduce the growth of Pst in vitro. Taken together, in this work, we described the proteomic changes in the apoplast induced by the treatment and by the inoculation, as well as demonstrated that the proteins identified have a role in the plant protection.


Asunto(s)
Solanum lycopersicum , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Enfermedades de las Plantas/genética , Proteómica , Pseudomonas syringae , Triptófano/análogos & derivados
3.
Plant J ; 84(1): 125-39, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26270176

RESUMEN

In this study, we have used untargeted global metabolomic analysis to determine and compare the chemical nature of the metabolites altered during the infection of tomato plants (cv. Ailsa Craig) with Botrytis cinerea (Bot) or Pseudomonas syringae pv. tomato DC3000 (Pst), pathogens that have different invasion mechanisms and lifestyles. We also obtained the metabolome of tomato plants primed using the natural resistance inducer hexanoic acid and then infected with these pathogens. By contrasting the metabolomic profiles of infected, primed, and primed + infected plants, we determined not only the processes or components related directly to plant defense responses, but also inferred the metabolic mechanisms by which pathogen resistance is primed. The data show that basal resistance and hexanoic acid-induced resistance to Bot and Pst are associated with a marked metabolic reprogramming. This includes significant changes in amino acids, sugars and free fatty acids, and in primary and secondary metabolism. Comparison of the metabolic profiles of the infections indicated clear differences, reflecting the fact that the plant's chemical responses are highly adapted to specific attackers. The data also indicate involvement of signaling molecules, including pipecolic and azelaic acids, in response to Pst and, interestingly, to Bot. The compound 1-methyltryptophan was shown to be associated with the tomato-Pst and tomato-Bot interactions as well as with hexanoic acid-induced resistance. Root application of this Trp-derived metabolite also demonstrated its ability to protect tomato plants against both pathogens.


Asunto(s)
Botrytis/fisiología , Resistencia a la Enfermedad , Pseudomonas syringae/fisiología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Triptófano/análogos & derivados , Regulación de la Expresión Génica de las Plantas , Metabolómica , Triptófano/metabolismo
4.
Plant J ; 81(2): 304-15, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25407262

RESUMEN

Cis-(+)-12-oxo-phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12-oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3-1 and SiOPR3-2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA-Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen-induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3-1 and SiOPR3-2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.


Asunto(s)
Botrytis/fisiología , Compuestos de Diazonio/metabolismo , Glucanos/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Piridinas/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética
5.
Plant J ; 77(3): 418-29, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24286390

RESUMEN

The plant cell wall constitutes an essential protection barrier against pathogen attack. In addition, cell-wall disruption leads to accumulation of jasmonates (JAs), which are key signaling molecules for activation of plant inducible defense responses. However, whether JAs in return modulate the cell-wall composition to reinforce this defensive barrier remains unknown. The enzyme 13-allene oxide synthase (13-AOS) catalyzes the first committed step towards biosynthesis of JAs. In potato (Solanum tuberosum), there are two putative St13-AOS genes, which we show here to be differentially induced upon wounding. We also determine that both genes complement an Arabidopsis aos null mutant, indicating that they encode functional 13-AOS enzymes. Indeed, transgenic potato plants lacking both St13-AOS genes (CoAOS1/2 lines) exhibited a significant reduction of JAs, a concomitant decrease in wound-responsive gene activation, and an increased severity of soft rot disease symptoms caused by Dickeya dadantii. Intriguingly, a hypovirulent D. dadantii pel strain lacking the five major pectate lyases, which causes limited tissue maceration on wild-type plants, regained infectivity in CoAOS1/2 plants. In line with this, we found differences in pectin methyl esterase activity and cell-wall pectin composition between wild-type and CoAOS1/2 plants. Importantly, wild-type plants had pectins with a lower degree of methyl esterification, which are the substrates of the pectate lyases mutated in the pel strain. These results suggest that, during development of potato plants, JAs mediate modification of the pectin matrix to form a defensive barrier that is counteracted by pectinolytic virulence factors from D. dadantii.


Asunto(s)
Ciclopentanos/metabolismo , Enterobacteriaceae/patogenicidad , Oxidorreductasas Intramoleculares/metabolismo , Oxilipinas/metabolismo , Pectinas/metabolismo , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Solanum tuberosum/inmunología , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas Bacterianas/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Pared Celular/metabolismo , Resistencia a la Enfermedad , Enterobacteriaceae/enzimología , Esterificación , Interacciones Huésped-Patógeno , Oxidorreductasas Intramoleculares/genética , Mutación , Enfermedades de las Plantas/microbiología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Solanum tuberosum/enzimología , Solanum tuberosum/genética , Solanum tuberosum/microbiología , Factores de Virulencia , Heridas y Lesiones
6.
Plants (Basel) ; 13(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39124177

RESUMEN

Plants face numerous environmental stresses that hinder their growth and productivity, including biotic agents, such as herbivores and parasitic microorganisms, as well as abiotic factors, such as cold, drought, salinity, and high temperature. To counter these challenges, plants have developed a range of defense strategies. Among these, plant antimicrobial proteins and peptides (APPs) have emerged as a promising solution. Due to their broad-spectrum activity, structural stability, and diverse mechanisms of action, APPs serve as powerful tools to complement and enhance conventional agricultural methods, significantly boosting plant defense and productivity. This review focuses on different studies on APPs, emphasizing their crucial role in combating plant pathogens and enhancing plant resilience against both biotic and abiotic stresses. Beginning with in vitro studies, we explore how APPs combat various plant pathogens. We then delve into the defense mechanisms triggered by APPs against biotic stress, showcasing their effectiveness against bacterial and fungal diseases. Additionally, we highlight the role of APPs in mitigating the abiotic challenges associated with climatic change. Finally, we discuss the current applications of APPs in agriculture, emphasizing their potential for sustainable agricultural practices and the need for future research in this area.

7.
Plant Physiol ; 158(2): 1054-66, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22158760

RESUMEN

For an efficient defense response against pathogens, plants must coordinate rapid genetic reprogramming to produce an incompatible interaction. Nitrate Trasnporter2 (NRT2) gene family members are sentinels of nitrate availability. In this study, we present an additional role for NRT2.1 linked to plant resistance against pathogens. This gene antagonizes the priming of plant defenses against the bacterial pathogen Pseudomonas syringae pv tomato DC3000 (Pst). The nrt2 mutant (which is deficient in two genes, NRT2.1 and NRT2.2) displays reduced susceptibility to this bacterium. We demonstrate that modifying environmental conditions that stimulate the derepression of the NRT2.1 gene influences resistance to Pst independently of the total level of endogenous nitrogen. Additionally, hormonal homeostasis seemed to be affected in nrt2, which displays priming of salicylic acid signaling and concomitant irregular functioning of the jasmonic acid and abscisic acid pathways upon infection. Effector-triggered susceptibility and hormonal perturbation by the bacterium seem to be altered in nrt2, probably due to reduced sensitivity to the bacterial phytotoxin coronatine. The main genetic and metabolic targets of coronatine in Arabidopsis (Arabidopsis thaliana) remain largely unstimulated in nrt2 mutants. In addition, a P. syringae strain defective in coronatine synthesis showed the same virulence toward nrt2 as the coronatine-producing strain. Taken together, the reduced susceptibility of nrt2 mutants seems to be a combination of priming of salicylic acid-dependent defenses and reduced sensitivity to the bacterial effector coronatine. These results suggest additional functions for NRT2.1 that may influence plant disease resistance by down-regulating biotic stress defense mechanisms and favoring abiotic stress responses.


Asunto(s)
Proteínas de Transporte de Anión/genética , Proteínas de Arabidopsis/genética , Eliminación de Gen , Pseudomonas syringae/fisiología , Solanum lycopersicum/microbiología , Genes de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Datos de Secuencia Molecular , Nitratos/metabolismo
8.
Sci Rep ; 13(1): 20336, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37990046

RESUMEN

The rise in antibiotic-resistant bacteria caused by the excessive use of antibiotics has led to the urgent exploration of alternative antimicrobial solutions. Among these alternatives, antimicrobial proteins, and peptides (Apps) have garnered attention due to their wide-ranging antimicrobial effects. This study focuses on evaluating the antimicrobial properties of Solanum lycopersicum heme-binding protein 2 (SlHBP2), an apoplastic protein extracted from tomato plants treated with 1-Methyl tryptophan (1-MT), against Pseudomonas syringae pv. tomato DC3000 (Pst). Computational studies indicate that SlHBP2 is annotated as a SOUL heme-binding family protein. Remarkably, recombinant SlHBP2 demonstrated significant efficacy in inhibiting the growth of Pst within a concentration range of 3-25 µg/mL. Moreover, SlHBP2 exhibited potent antimicrobial effects against other microorganisms, including Xanthomonas vesicatoria (Xv), Clavibacter michiganensis subsp. michiganensis (Cmm), and Botrytis cinerea. To understand the mechanism of action employed by SlHBP2 against Pst, various techniques such as microscopy and fluorescence assays were employed. The results revealed that SlHBP2 disrupts the bacterial cell wall and causes leakage of intracellular contents. To summarize, the findings suggest that SlHBP2 has significant antimicrobial properties, making it a potential antimicrobial agent against a wide range of pathogens. Although further studies are warranted to explore the full potential of SlHBP2 and its suitability in various applications.


Asunto(s)
Antiinfecciosos , Solanum lycopersicum , Proteínas de Unión al Hemo , Antiinfecciosos/farmacología , Clavibacter , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Pseudomonas syringae
9.
Biomater Sci ; 11(3): 1042-1055, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36562316

RESUMEN

Advanced antibacterial biomaterials can help reduce the severe consequences of infections. Using copper compounds is an excellent option to achieve this goal; they offer a combination of regenerative and antimicrobial functions. In this study, new CuCl2-doped sol-gel coatings were developed and physicochemically characterised. Their osteogenic and inflammatory responses were tested in vitro using human osteoblasts and THP-1 macrophages. Their antibacterial effect was evaluated using Escherichia coli and Staphylococcus aureus. The Cu influence on the adsorption of human serum proteins was analysed employing proteomics. The materials released Cu2+ and were not cytotoxic. The osteoblasts in contact with these materials showed an increased ALP, BMP2 and OCN gene expression. THP-1 showed an increase in pro-inflammatory markers related to M1 polarization. Moreover, Cu-doped coatings displayed a potent antibacterial behaviour against E. coli and S. aureus. The copper ions affected the adsorption of proteins related to immunity, coagulation, angiogenesis, fibrinolysis, and osteogenesis. Interestingly, the coatings had increased affinity to proteins with antibacterial functions and proteins linked to the complement system activation that can lead to direct bacterial killing via large pore-forming complexes. These results contribute to our understanding of the antibacterial mechanisms of Cu-biomaterials and their interaction with biological systems.


Asunto(s)
Materiales Biocompatibles Revestidos , Staphylococcus aureus , Humanos , Cobre/química , Escherichia coli , Proteómica , Proteínas , Antibacterianos/farmacología , Antibacterianos/química
10.
Viruses ; 14(2)2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35215777

RESUMEN

Ralstonia solanacearum is a pathogen that causes bacterial wilt producing severe damage in staple solanaceous crops. Traditional control has low efficacy and/or environmental impact. Recently, the bases of a new biotechnological method by lytic bacteriophages vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 with specific activity against R. solanacearum were established. However, some aspects remain unknown, such as the survival and maintenance of the lytic activity after submission to a preservation method as the lyophilization. To this end, viability and stability of lyophilized vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 and their capacity for bacterial wilt biocontrol have been determined against one pathogenic Spanish reference strain of R. solanacearum in susceptible tomato plants in different conditions and making use of various cryoprotectants. The assays carried out have shown satisfactory results with respect to the viability and stability of the bacteriophages after the lyophilization process, maintaining high titers throughout the experimental period, and with respect to the capacity of the bacteriophages for the biological control of bacterial wilt, controlling this disease in more than 50% of the plants. The results offer good prospects for the use of lyophilization as a conservation method for the lytic bacteriophages of R. solanacearum in view of their commercialization as biocontrol agents.


Asunto(s)
Bacteriófagos/química , Bacteriófagos/crecimiento & desarrollo , Agentes de Control Biológico/química , Conservación de Alimentos/métodos , Enfermedades de las Plantas/prevención & control , Ralstonia solanacearum/virología , Solanum lycopersicum/microbiología , Conservación de Alimentos/economía , Liofilización , Frutas/economía , Frutas/microbiología , Solanum lycopersicum/economía , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/fisiología
11.
Plant Sci ; 318: 111210, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35351299

RESUMEN

The use of fungal endophytes is considered as a new tool to confer resistance in plants against stresses. However, the mechanisms involved in colonization as well as in the induction of resistance by the endophytes are usually unclear. In this work, we tested whether a fungal endophyte isolated from an ancestor of wheat could induce resistance in plants of a different class from the ones that were isolated from the beginning. Seeds of Solanum lycopersicum were inoculated with Acremonium sclerotigenum and after four weeks, seedlings were inoculated with the bacterium Pseudomonas syringae pv tomato. Plants inoculated with endophytes showed significantly lower symptoms of infection as well as lower levels of colony forming units compared with control plants. Moreover, the presence of the endophytes induced an enhancement of Jasmonic acid (JA) upon inoculation with P. syringae compared with endophyte free plants. To ascertain the implication of JA in the resistance induced by A. sclerotigenum, two mutants defective in JA were tested. Results showed that the endophyte is not able to induce resistance in the mutant spr2, which is truncated in the first step of JA biosynthesis. On the contrary, acx1 mutant plants, which are unable to synthesize JA from OPC8, show a phenotype similar to wild type plants. Moreover, experiments with GFP-tagged endophytes showed no differences in the colonization in both mutants. In conclusion, the jasmonic acid pathway is required for the resistance mediated by the endophyte A. sclerotigenum in tomato against the biotrophic bacterium P. syringae but is not necessary for the colonization.


Asunto(s)
Solanum lycopersicum , Acremonium , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/metabolismo , Oxilipinas , Pseudomonas syringae
12.
Plants (Basel) ; 11(22)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36432899

RESUMEN

Increased temperatures caused by climate change constitute a significant threat to agriculture and food security. The selection of improved crop varieties with greater tolerance to heat stress is crucial for the future of agriculture. To overcome this challenge, four traditional tomato varieties from the Mediterranean basin and two commercial genotypes were selected to characterize their responses at high temperatures. The screening of phenotypes under heat shock conditions allowed to classify the tomato genotypes as: heat-sensitive: TH-30, ADX2; intermediate: ISR-10 and Ailsa Craig; heat-tolerant: MM and MO-10. These results reveal the intra-genetical variation of heat stress responses, which can be exploited as promising sources of tolerance to climate change conditions. Two different thermotolerance strategies were observed. The MO-10 plants tolerance was based on the control of the leaf cooling mechanism and the rapid RBOHB activation and ABA signaling pathways. The variety MM displayed a different strategy based on the activation of HSP70 and 90, as well as accumulation of phenolic compounds correlated with early induction of PAL expression. The importance of secondary metabolism in the recovery phase has been also revealed. Understanding the molecular events allowing plants to overcome heat stress constitutes a promising approach for selecting climate resilient tomato varieties.

13.
Plants (Basel) ; 9(2)2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31978963

RESUMEN

The jasmonic acid pathway has been considered as the backbone of the response against necrotrophic pathogens. However, a hemi-biotrophic pathogen, such as Pseudomonas syringae, has taken advantage of the crosstalk between the different plant hormones in order to manipulate the responses for its own interest. Despite that, the way in which Pseudomonas syringae releases coronatine to activate jasmonic acid-derived responses and block the activation of salicylic acid-mediated responses is widely known. However, the implication of the jasmonic intermediates in the plant-Pseudomonas interaction is not studied yet. In this work, we analyzed the response of both, plant and bacteria using SiOPR3 tomato plants. Interestingly, SiOPR3 plants are more resistant to infection with Pseudomonas. The gene expression of bacteria showed that, in SiOPR3 plants, the activation of pathogenicity is repressed in comparison to wild type plants, suggesting that the jasmonic acid pathway might play a role in the pathogenicity of the bacteria. Moreover, treatments with JA restore the susceptibility as well as activate the expression of bacterial pathogenicity genes. The observed results suggest that a complete jasmonic acid pathway is necessary for the susceptibility of tomato plants to Pseudomonas syringae.

14.
Antioxidants (Basel) ; 9(7)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664231

RESUMEN

The apoplast comprises the intercellular space, the cell walls, and the xylem. Important functions for the plant, such as nutrient and water transport, cellulose synthesis, and the synthesis of molecules involved in plant defense against both biotic and abiotic stresses, take place in it. The most important molecules are ROS, antioxidants, proteins, and hormones. Even though only a small quantity of ROS is localized within the apoplast, apoplastic ROS have an important role in plant development and plant responses to various stress conditions. In the apoplast, like in the intracellular cell compartments, a specific set of antioxidants can be found that can detoxify the different types of ROS produced in it. These scavenging ROS components confer stress tolerance and avoid cellular damage. Moreover, the production and accumulation of proteins and peptides in the apoplast take place in response to various stresses. Hormones are also present in the apoplast where they perform important functions. In addition, the apoplast is also the space where microbe-associated molecular Patterns (MAMPs) are secreted by pathogens. In summary, the diversity of molecules found in the apoplast highlights its importance in the survival of plant cells.

15.
Mol Plant Microbe Interact ; 22(11): 1455-65, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19810814

RESUMEN

We have demonstrated that root treatment with hexanoic acid protects tomato plants against Botrytis cinerea. Hexanoic acid-induced resistance (Hx-IR) was blocked in the jasmonic acid (JA)-insensitive mutant jai1 (a coi1 homolog) and in the abscisic acid (ABA)-deficient mutant flacca (flc). Upon infection, the LoxD gene as well as the oxylipin 12-oxo-phytodienoic acid and the bioactive molecule JA-Ile were clearly induced in treated plants. However, the basal ABA levels were not altered. Hexanoic acid primed callose deposition against B. cinerea in a cultivar-dependent manner. Treated plants from Ailsa Craig, Moneymaker, and Rheinlands Ruhm showed increased callose deposition but not from Castlemart. Hexanoic acid did not prime callose accumulation in flc plants upon B. cinerea infection; therefore, ABA could act as a positive regulator of Hx-IR by enhancing callose deposition. Furthermore, although hexanoic acid protected the JA-deficient mutant defensless1 (def1), the priming for callose was higher than in the wild type. This suggests a link between JA and callose deposition in tomato. Hence, the obtained results support the idea that callose, oxylipins, and the JA-signaling pathway are involved in Hx-IR against B. cinerea. Moreover our data support the relevance of JA-signaling for basal defense against this necrotroph in tomato. Hexanoic acid also protected against Pseudomonas syringae, indicating a broad-spectrum effect for this new inducer.


Asunto(s)
Botrytis/fisiología , Caproatos/farmacología , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/microbiología , Ácido Abscísico , Mutación , Pseudomonas syringae , Transducción de Señal
16.
Plants (Basel) ; 8(7)2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31269704

RESUMEN

In a scenario of global climate change, water scarcity is a major threat for agriculture, severely limiting crop yields. Therefore, alternatives are urgently needed for improving plant adaptation to drought stress. Among them, gene expression reprogramming by microRNAs (miRNAs) might offer a biotechnologically sound strategy. Drought-responsive miRNAs have been reported in many plant species, and some of them are known to participate in complex regulatory networks via their regulation of transcription factors involved in water stress signaling. We explored the role of miR159 in the response of Solanum lycopersicum Mill. plants to drought stress by analyzing the expression of sly-miR159 and its target SlMYB transcription factor genes in tomato plants of cv. Ailsa Craig grown in deprived water conditions or in response to mechanical damage caused by the Colorado potato beetle, a devastating insect pest of Solanaceae plants. Results showed that sly-miR159 regulatory function in the tomato plants response to distinct stresses might be mediated by differential stress-specific MYB transcription factor targeting. sly-miR159 targeting of SlMYB33 transcription factor transcript correlated with accumulation of the osmoprotective compounds proline and putrescine, which promote drought tolerance. This highlights the potential role of sly-miR159 in tomato plants' adaptation to water deficit conditions.

17.
Front Microbiol ; 9: 2056, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233534

RESUMEN

Plants can produce numerous natural products, many of which have been shown to confer protection against microbial attack. In this way, we identified 1-methyltryptophan (1-MT), a natural compound produced by tomato plants in response to Pseudomonas syringae attack, whose application by soil drench provided protection against this pathogen. In the present work, we have studied the mechanisms underlying this protection. The results demonstrated that 1-MT can be considered a new activator of plant defense responses that acts by inhibiting the stomatal opening produced by coronatine (COR) and could thereby, prevent bacteria entering the mesophyll. Besides, 1-MT acts by blocking the jasmonic acid (JA) pathway that, could avoid manipulation of the salicylic acid (SA) pathway by the bacterium, and thus hinder its growth. Although the concentration of 1-MT reached in the plant did not show antimicrobial effects, we cannot rule out a role for 1-MT acting alone because it affects the expression of the fliC gene that is involved in synthesis of the flagellum. These changes would result in reduced bacterium motility and, therefore, infective capacity. The results highlight the effect of a tryptophan derivative on induced resistance in plants.

18.
Pest Manag Sci ; 74(11): 2601-2607, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29687602

RESUMEN

BACKGROUND: Phytopathogenic problems caused by the bacterial pathogen Pseudomonas syringae in tomato are becoming more serious due to the emergence of strains resistant to classical pesticides. This has led to research into new formulations with lower environmental problems. One of the most promising alternatives to the use of classical pesticides is the induction of natural plant defences. New formulations based on Cu complexed with heptagluconic acid induce plant innate defences and could be an alternative to classical treatments based on inorganic Cu against bacterial speck. To study the efficacy of this compound in tomato against P. syringae, we tested its systemic effect Applying the treatments via radicular. RESULTS: Treated plants showed less infection development and lower number of viable bacteria in leaves. We also observed better performance of parameters involved in plant resistance such as the antioxidant response and the accumulation of phenolic compounds. CONCLUSION: Results showed that soil drench applications can be highly effective for the prevention and control of bacterial speck in tomato plants, showing a reduction in symptoms of ∼ 50%. Moreover, application of Cu heptagluconate induced accumulation of the plant polyphenols caffeic and chlorogenic acids, and reduced the amount of reactive oxygen species in infected plants. © 2018 Society of Chemical Industry.


Asunto(s)
Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Pseudomonas syringae/efectos de los fármacos , Solanum lycopersicum/inmunología , Azúcares Ácidos/farmacología , Cobre/farmacología , Gluconatos/farmacología , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología
19.
Pest Manag Sci ; 73(5): 1017-1023, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27558547

RESUMEN

BACKGROUND: Developments of alternatives to the use of chemical pesticides to control pests are focused on the induction of natural plant defences. The study of new compounds based on liquid bioassimilable sulphur and its effect as an inductor of the immune system of plants would provide an alternative option to farmers to enhance plant resistance against pathogen attacks such as powdery mildew. In order to elucidate the efficacy of this compound in tomato against powdery mildew, we tested several treatments: curative foliar, preventive foliar, preventive in soil drench and combining preventive in soil drench and curative foliar. RESULTS: In all cases, treated plants showed lower infection development, better physiological parameters and a higher level of chlorophyll. We also observed better performance in parameters involved in plant resistance such as antioxidant response, callose deposition and hormonal levels. CONCLUSION: The results indicate that preventive and curative treatments can be highly effective for the prevention and control of powdery mildew in tomato plants. Foliar treatments are able to stop the pathogen development when they are applied as curative. Soil drench treatments induce immune response mechanisms of plants, increasing significantly callose deposition and promoting plant development. © 2016 Society of Chemical Industry.


Asunto(s)
Ascomicetos/efectos de los fármacos , Ascomicetos/fisiología , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/inmunología , Azufre/metabolismo , Azufre/farmacología , Clorofila/metabolismo , Glucanos/metabolismo , Peróxido de Hidrógeno/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo
20.
PLoS One ; 9(9): e106429, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25244125

RESUMEN

The efficacy of hexanoic acid (Hx) as an inducer of resistance in tomato plants against Pseudomonas syringae pv. tomato DC3000 was previously demonstrated, and the plant response was characterized. Because little is known about the reaction of the pathogen to this effect, the goal of the present work was to determine whether the changes in the plant defence system affect the pathogen behaviour. This work provides the first demonstration of the response of the pathogen to the changes observed in plants after Hx application in terms of not only the population size but also the transcriptional levels of genes involved in quorum sensing establishment and pathogenesis. Therefore, it is possible that Hx treatment attenuates the virulence and survival of bacteria by preventing or diminishing the appearance of symptoms and controlling the growth of the bacteria in the mesophyll. It is interesting to note that the gene transcriptional changes in the bacteria from the treated plants occur at the same time as the changes in the plants. Hx is able to alter bacteria pathogenesis and survival only when it is applied as a resistance inducer because the changes that it promotes in plants affect the bacteria.


Asunto(s)
Caproatos/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/efectos de los fármacos , Solanum lycopersicum/microbiología , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA