Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioorg Chem ; 131: 106282, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36459777

RESUMEN

The low aqueous solubility of colchicine site antimitotic agents, of which the trimethoxyphenyl (A ring) is a heavy contributor, is a serious drawback in their clinical development. We have designed new A ring analogs with chameleonic masked polar amino groups able to increase aqueous solubility and also behave as non-polar through intramolecular hydrogen bonds when bound to tubulin. We have incorporated these new A rings in several scaffolds (sulfonamides, combretastatins, phenstatins, isocombretastatins), synthesized, and assayed 43 representatives. The amino analogs show improved aqueous solubility and some of them (8, 60Z, and 67) nanomolar anti-proliferative potencies against human cancer cell lines, with the most favorable substituent being a 3-methylamino group. The antiproliferative effect relates to tubulin inhibition as shown by in vitro tubulin polymerization inhibition, immunofluorescence microscopy, and cell cycle and apoptosis analysis by flow cytometry. The compounds arrest the cell cycle of treated cells in G2/M and later develop an apoptotic response. Docking studies suggested binding at the colchicine site of tubulin with good agreement with the DFT models of the new structural variations made. The 3-methylamino-4,5­dimethoxyphenyl moiety is an example of the masked polar group incorporation (MPGI) strategy for soluble ligands binding to hydrophobic sites and a good trimethoxyphenyl ring replacement for the development of new colchicine site ligands.


Asunto(s)
Antineoplásicos , Colchicina , Humanos , Colchicina/química , Línea Celular Tumoral , Sitios de Unión , Tubulina (Proteína)/metabolismo , Solubilidad , Relación Estructura-Actividad , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/química , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular
2.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139302

RESUMEN

Antimitotic agents are one of the more successful types of anticancer drugs, but they suffer from toxicity and resistance. The application of approved drugs to new indications (i.e., drug repurposing) is a promising strategy for the development of new drugs. It relies on finding pattern similarities: drug effects to other drugs or conditions, similar toxicities, or structural similarity. Here, we recursively searched a database of approved drugs for structural similarity to several antimitotic agents binding to a specific site of tubulin, with the expectation of finding structures that could fit in it. These searches repeatedly retrieved frentizole, an approved nontoxic anti-inflammatory drug, thus indicating that it might behave as an antimitotic drug devoid of the undesired toxic effects. We also show that the usual repurposing approach to searching for targets of frentizole failed in most cases to find such a relationship. We synthesized frentizole and a series of analogs to assay them as antimitotic agents and found antiproliferative activity against HeLa tumor cells, inhibition of microtubule formation within cells, and arrest at the G2/M phases of the cell cycle, phenotypes that agree with binding to tubulin as the mechanism of action. The docking studies suggest binding at the colchicine site in different modes. These results support the repurposing of frentizole for cancer treatment, especially for glioblastoma.


Asunto(s)
Antimitóticos , Antineoplásicos , Antimitóticos/farmacología , Tubulina (Proteína)/metabolismo , Línea Celular Tumoral , Relación Estructura-Actividad , Colchicina/química , Antineoplásicos/farmacología , Antineoplásicos/química , Moduladores de Tubulina/química , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Sitios de Unión
3.
J Enzyme Inhib Med Chem ; 36(1): 2025-2044, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34514909

RESUMEN

Searching for improved indolesulfonamides with higher polarities, 45 new analogues with modifications on the sulfonamide nitrogen, the methoxyaniline, and/or the indole 3-position were synthesised. They show submicromolar to nanomolar antiproliferative IC50 values against four human tumour cell lines and they are not P-glycoprotein substrates as their potencies against HeLa cells did not improve upon cotreatment with multidrug resistance (MDR) inhibitors. The compounds inhibit tubulin polymerisation in vitro and in cells, thus causing a mitotic arrest followed by apoptosis as shown by cell cycle distribution studies. Molecular modelling studies indicate binding at the colchicine site. Methylated sulfonamides were more potent than those with large and polar substitutions. Amide, formyl, or nitrile groups at the indole 3-position provided drug-like properties for reduced toxicity, with Polar Surface Areas (PSA) above a desirable 75 Å2. Nitriles 15 and 16 are potent polar analogues and represent an interesting class of new antimitotics.


Asunto(s)
Antineoplásicos/farmacología , Colchicina/antagonistas & inhibidores , Sulfonamidas/farmacología , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Colchicina/química , Colchicina/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Modelos Moleculares , Estructura Molecular , Polimerizacion/efectos de los fármacos , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Tubulina (Proteína)/química , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química , Células Tumorales Cultivadas
4.
J Enzyme Inhib Med Chem ; 36(1): 1029-1047, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34107837

RESUMEN

Thirty seven N-(5-methoxyphenyl)-4-methoxybenzenesulphonamide with methoxy or/and bromo substitutions (series 1-4) and with different substituents on the sulphonamide nitrogen have been synthesised. 21 showed sub-micromolar cytotoxicity against HeLa and HT-29 human tumour cell lines, and were particularly effective against MCF7. The most potent series has 2,5-dimethoxyanilines, especially the 4-brominated compounds 23-25. The active compounds inhibit microtubular protein polymerisation at micromolar concentrations, thus pointing at tubulin as the target. Co-treatment with the MDR inhibitor verapamil suggests that they are not MDR substrates. Compound 25 showed nanomolar antiproliferative potency. It severely disrupts the microtubule network in cells and arrests cells at the G2/M cell-cycle phase, thus confirming tubulin targeting. 25 triggered apoptotic cell death, and induced autophagy. Docking studies suggest binding in a distinct way to the colchicine site. These compounds are promising new antitumor agents acting on tubulin.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Sulfonamidas/uso terapéutico , Adenocarcinoma/patología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células MCF-7
5.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33673002

RESUMEN

Pan-Gyn cancers entail 1 in 5 cancer cases worldwide, breast cancer being the most commonly diagnosed and responsible for most cancer deaths in women. The high incidence and mortality of these malignancies, together with the handicaps of taxanes-first-line treatments-turn the development of alternative therapeutics into an urgency. Taxanes exhibit low water solubility that require formulations that involve side effects. These drugs are often associated with dose-limiting toxicities and with the appearance of multi-drug resistance (MDR). Here, we propose targeting tubulin with compounds directed to the colchicine site, as their smaller size offer pharmacokinetic advantages and make them less prone to MDR efflux. We have prepared 52 new Microtubule Destabilizing Sulfonamides (MDS) that mostly avoid MDR-mediated resistance and with improved aqueous solubility. The most potent compounds, N-methyl-N-(3,4,5-trimethoxyphenyl-4-methylaminobenzenesulfonamide 38, N-methyl-N-(3,4,5-trimethoxyphenyl-4-methoxy-3-aminobenzenesulfonamide 42, and N-benzyl-N-(3,4,5-trimethoxyphenyl-4-methoxy-3-aminobenzenesulfonamide 45 show nanomolar antiproliferative potencies against ovarian, breast, and cervix carcinoma cells, similar or even better than paclitaxel. Compounds behave as tubulin-binding agents, causing an evident disruption of the microtubule network, in vitro Tubulin Polymerization Inhibition (TPI), and mitotic catastrophe followed by apoptosis. Our results suggest that these novel MDS may be promising alternatives to taxane-based chemotherapy in chemoresistant Pan-Gyn cancers.


Asunto(s)
Antineoplásicos/farmacología , Sulfonamidas/farmacología , Taxoides/farmacología , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Células HT29 , Células HeLa , Humanos , Células MCF-7 , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Polimerizacion/efectos de los fármacos , Sulfonamidas/química , Sulfonamidas/uso terapéutico , Taxoides/uso terapéutico , Moduladores de Tubulina/química , Moduladores de Tubulina/uso terapéutico
6.
Bioorg Chem ; 98: 103755, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32200330

RESUMEN

Colchicine site antimitotic agents typically suffer from low aqueous solubilities and are formulated as phosphate prodrugs of phenolic groups. These hydroxyl groups are the aim of metabolic transformations leading to resistance. There is an urgent need for more intrinsically soluble analogues lacking these hydroxyl groups. The 3,4,5-trimethoxyphenyl ring of combretastatin A-4 is a liability in terms of solubility but it is considered essential for high cytotoxic and tubulin polymerization inhibitory (TPI) activity. We have synthesized 36 new analogues of combretastatin A-4 replacing the trimethoxyphenyl moiety with more polar pyridine based moieties, measured their aqueous solubility, and studied their anti-proliferative effects against 3 human cancer cell lines. We show here that pyridine rings can be successful replacements for the trimethoxyphenyl ring, resulting in potent and more soluble analogues. The more straightforward replacement, a 2,6-dimethoxypyridine ring led to inactive analogues, but a 2-methoxy-6-methylsulfanylpyridine moiety led to active analogues when combined with different B rings. This replacement led to potent cytotoxic activity against sensitive human cancer cell lines due to tubulin inhibition, as shown by cell cycle analysis, confocal microscopy, and tubulin polymerization inhibitory activity studies. Cell cycle analysis also showed apoptotic responses following treatment. Docking studies suggested binding at the colchicine site of tubulin and provided a good agreement with the observed SAR. A 2-methoxy-6-methylsulfanylpyridine moiety is a good trimethoxyphenyl ring replacement for the development of new colchicine site ligands.


Asunto(s)
Antineoplásicos/farmacología , Colchicina/farmacología , Piridinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colchicina/síntesis química , Colchicina/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ligandos , Estructura Molecular , Polimerizacion/efectos de los fármacos , Piridinas/química , Solubilidad , Relación Estructura-Actividad , Tubulina (Proteína)/metabolismo , Células Tumorales Cultivadas
7.
Med Res Rev ; 39(3): 775-830, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30362234

RESUMEN

Tubulin, the microtubules and their dynamic behavior are amongst the most successful antitumor, antifungal, antiparasitic, and herbicidal drug targets. Sulfonamides are exemplary drugs with applications in the clinic, in veterinary and in the agrochemical industry. This review summarizes the actual state and recent progress of both fields looking from the double point of view of the target and its drugs, with special focus onto the structural aspects. The article starts with a brief description of tubulin structure and its dynamic assembly and disassembly into microtubules and other polymers. Posttranslational modifications and the many cellular means of regulating and modulating tubulin's biology are briefly presented in the tubulin code. Next, the structurally characterized drug binding sites, their occupying drugs and the effects they induce are described, emphasizing on the structural requirements for high potency, selectivity, and low toxicity. The second part starts with a summary of the favorable and highly tunable combination of physical-chemical and biological properties that render sulfonamides a prototypical example of privileged scaffolds with representatives in many therapeutic areas. A complete description of tubulin-binding sulfonamides is provided, covering the different species and drug sites. Some of the antimitotic sulfonamides have met with very successful applications and others less so, thus illustrating the advances, limitations, and future perspectives of the field. All of them combine in a mechanism of action and a clinical outcome that conform efficient drugs.


Asunto(s)
Sulfonamidas/farmacología , Moduladores de Tubulina/farmacología , Secuencia de Aminoácidos , Animales , Ensayos Clínicos como Asunto , Humanos , Sulfonamidas/química , Andamios del Tejido/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química
8.
Molecules ; 24(23)2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31779228

RESUMEN

Colchicine site ligands suffer from low aqueous solubility due to the highly hydrophobic nature of the binding site. A new strategy for increasing molecular polarity without exposing polar groups-termed masked polar group incorporation (MPGI)-was devised and applied to nitrogenated combretastatin analogues. Bulky ortho substituents to the pyridine nitrogen hinder it from the hydrophobic pocket while increasing molecular polarity. The resulting analogues show improved aqueous solubilities and highly potent antiproliferative activity against several cancer cell lines of different origin. The more potent compounds showed moderate tubulin polymerization inhibitory activity, arrested the cell cycle of treated cells at the G2/M phase, and subsequently caused apoptotic cell death represented by the cells gathered at the subG0/G1 population after 48 h of treatment. Annexin V/Propidium Iodide (PI) double-positive cells observed after 72 h confirmed the induction of apoptosis. Docking studies suggest binding at the colchicine site of tubulin in a similar way as combretastatin A4, with the polar groups masked by the vicinal substituents. These results validate the proposed strategy for the design of colchicine site ligands and open a new road to increasing the aqueous solubility of ligands binding in apolar environments.


Asunto(s)
Bibencilos/química , Nitrógeno/química , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Apoptosis/efectos de los fármacos , Sitios de Unión , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Colchicina/química , Diseño de Fármacos , Células HT29 , Células HeLa , Humanos , Ligandos , Células MCF-7 , Simulación del Acoplamiento Molecular , Piridinas/química , Solubilidad/efectos de los fármacos , Relación Estructura-Actividad
9.
Biomed Pharmacother ; 171: 116149, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38266621

RESUMEN

Metastasis is the leading cause of cancer mortality. Metastatic cancer is notoriously difficult to treat, and it accounts for the majority of cancer-related deaths. The ether lipid edelfosine is the prototype of a family of synthetic antitumor compounds collectively known as alkylphospholipid analogs, and its antitumor activity involves lipid raft reorganization. In this study, we examined the effect of edelfosine on metastatic colonization and angiogenesis. Using non-invasive bioluminescence imaging and histological examination, we found that oral administration of edelfosine in nude mice significantly inhibited the lung and brain colonization of luciferase-expressing 435-Lung-eGFP-CMV/Luc metastatic cells, resulting in prolonged survival. In metastatic 435-Lung and MDA-MB-231 breast cancer cells, we found that edelfosine also inhibited cell adhesion to collagen-I and laminin-I substrates, cell migration in chemotaxis and wound-healing assays, as well as cancer cell invasion. In 435-Lung and other MDA-MB-435-derived sublines with different organotropism, edelfosine induced G2/M cell cycle accumulation and apoptosis in a concentration- and time-dependent manner. Edelfosine also inhibited in vitro angiogenesis in human and mouse endothelial cell tube formation assays. The antimetastatic properties were specific to cancer cells, as edelfosine had no effects on viability in non-cancerous cells. Edelfosine accumulated in membrane rafts and endoplasmic reticulum of cancer cells, and membrane raft-located CD44 was downregulated upon drug treatment. Taken together, this study highlights the potential of edelfosine as an attractive drug to prevent metastatic growth and organ colonization in cancer therapy. The raft-targeted drug edelfosine displays a potent activity against metastatic organ colonization and angiogenesis, two major hallmarks of tumor malignancy.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Humanos , Ratones Desnudos , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Éteres Fosfolípidos/metabolismo , Éteres Fosfolípidos/farmacología , Éteres Fosfolípidos/uso terapéutico , Apoptosis , Microdominios de Membrana/metabolismo
10.
Eur J Med Chem ; 209: 112933, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33328100

RESUMEN

Isocombretastatins are the not isomerizable 1,1-diarylethene isomers of combretastatins. Both families of antimitotics are poorly soluble and new analogs with improved water solubility are needed. The ubiquitous 3,4,5-trimethoxyphenyl ring and most of its replacements contribute to the solubility problem. 39 new compounds belonging to two series of isocombretastatin analogs with 2-chloro-6-methylsulfanyl-4-pyridinyl or 2,6-bis(methylsulfanyl)-4-pyridinyl moieties replacing the 3,4,5-trimethoxyphenyl have been synthesized and their antimitotic activity and aqueous solubility have been studied. We show here that 2-chloro-6-methylsulfanylpyridines are more successful replacements than 2,6-bis(methylsulfanyl)pyridines, giving highly potent tubulin inhibitors and cytotoxic compounds with improved water solubilities. The optimal combination is with indole rings carrying polar substitutions at the three position. The resulting diheteroaryl isocombretastatin analogs showed potent cytotoxic activity against human cancer cell lines caused by tubulin inhibition, as shown by in vitro tubulin polymerization inhibitory assays, cell cycle analysis, and confocal microscopy studies. Cell cycle analysis also showed apoptotic responses following G2/M arrest after treatment. Conformational analysis and docking studies were applied to propose binding modes of the compounds at the colchicine site of tubulin and were in good agreement with the observed SAR. 2-Chloro-6-methylsulfanylpyridines represent a new and successful trimethoxyphenyl ring substitution for the development of improved colchicine site ligands.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Piridinas/química , Estilbenos/farmacología , División Celular/efectos de los fármacos , Colchicina/metabolismo , Fase G2/efectos de los fármacos , Humanos , Solubilidad , Estilbenos/química , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA