Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 41(22): e111952, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36314651

RESUMEN

Aging is a major risk factor to develop neurodegenerative diseases and is associated with decreased buffering capacity of the proteostasis network. We investigated the significance of the unfolded protein response (UPR), a major signaling pathway activated to cope with endoplasmic reticulum (ER) stress, in the functional deterioration of the mammalian brain during aging. We report that genetic disruption of the ER stress sensor IRE1 accelerated age-related cognitive decline. In mouse models, overexpressing an active form of the UPR transcription factor XBP1 restored synaptic and cognitive function, in addition to reducing cell senescence. Proteomic profiling of hippocampal tissue showed that XBP1 expression significantly restore changes associated with aging, including factors involved in synaptic function and pathways linked to neurodegenerative diseases. The genes modified by XBP1 in the aged hippocampus where also altered. Collectively, our results demonstrate that strategies to manipulate the UPR in mammals may help sustain healthy brain aging.


Asunto(s)
Envejecimiento , Encéfalo , Proteínas Serina-Treonina Quinasas , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box , Animales , Ratones , Envejecimiento/genética , Encéfalo/metabolismo , Estrés del Retículo Endoplásmico/genética , Proteínas Serina-Treonina Quinasas/genética , Proteómica , Transducción de Señal/fisiología , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
2.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446028

RESUMEN

Huntington's disease (HD) is a disorder caused by an abnormal expansion of trinucleotide CAG repeats within the huntingtin (Htt) gene. Under normal conditions, the CREB Binding Protein interacts with CREB elements and acetylates Lysine 27 of Histone 3 to direct the expression of several genes. However, mutant Htt causes depletion of CBP, which in turn induces altered histone acetylation patterns and transcriptional deregulation. Here, we have studied a differential expression analysis and H3K27ac variation in 4- and 6-week-old R6/2 mice as a model of juvenile HD. The analysis of differential gene expression and acetylation levels were integrated into Gene Regulatory Networks revealing key regulators involved in the altered transcription cascade. Our results show changes in acetylation and gene expression levels that are related to impaired neuronal development, and key regulators clearly defined in 6-week-old mice are proposed to drive the downstream regulatory cascade in HD. Here, we describe the first approach to determine the relationship among epigenetic changes in the early stages of HD. We determined the existence of changes in pre-symptomatic stages of HD as a starting point for early onset indicators of the progression of this disease.


Asunto(s)
Enfermedad de Huntington , Ratones , Animales , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Histonas/genética , Histonas/metabolismo , Acetilación , Modelos Animales de Enfermedad , Epigénesis Genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
3.
Molecules ; 28(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36677826

RESUMEN

In this study, vacuum drying (VD) was employed as an approach to protect the bioactive components of and produce dried broccoli powders with a high biological activity. To achieve these goals, the effects of temperature (at the five levels of 50, 60, 70, 80 and 90 °C) and constant vacuum pressure (10 kPa) were evaluated. The results show that, with the increasing temperature, the drying time decreased. Based on the statistical tests, the Brunauer-Emmett-Teller (BET) model was found to fit well to sorption isotherms, whereas the Midilli and Kucuk model fit well to the drying kinetics. VD has a significant impact on several proximate composition values. As compared with the fresh sample, VD significantly reduced the total phenol, flavonoid and glucosinolate contents. However, it was shown that VD at higher temperatures (80 and 90 °C) contributed to a better antioxidant potential of broccoli powder. In contrast, 50 °C led to a better antimicrobial and neuroprotective effects, presumably due to the formation of isothiocyanate (ITC). Overall, this study demonstrates that VD is a promising technique for the development of extracts from broccoli powders that could be used as natural preservatives or as a neuroprotective agent.


Asunto(s)
Antiinfecciosos , Brassica , Antioxidantes/farmacología , Polvos , Vacio , Antiinfecciosos/farmacología
4.
Opt Express ; 30(19): 33433-33448, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36242380

RESUMEN

In-line lensless digital holography has great potential in multiple applications; however, reconstructing high-quality images from a single recorded hologram is challenging due to the loss of phase information. Typical reconstruction methods are based on solving a regularized inverse problem and work well under suitable image priors, but they are extremely sensitive to mismatches between the forward model and the actual imaging system. This paper aims to improve the robustness of such algorithms by introducing the adaptive sparse reconstruction method, ASR, which learns a properly constrained point spread function (PSF) directly from data, as opposed to solely relying on physics-based approximations of it. ASR jointly performs holographic reconstruction, PSF estimation, and phase retrieval in an unsupervised way by maximizing the sparsity of the reconstructed images. Like traditional methods, ASR uses the image formation model along with a sparsity prior, which, unlike recent deep learning approaches, allows for unsupervised reconstruction with as little as one sample. Experimental results in synthetic and real data show the advantages of ASR over traditional reconstruction methods, especially in cases where the theoretical PSF does not match that of the actual system.

5.
Mol Ther ; 29(5): 1862-1882, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33545358

RESUMEN

Alteration to endoplasmic reticulum (ER) proteostasis is observed in a variety of neurodegenerative diseases associated with abnormal protein aggregation. Activation of the unfolded protein response (UPR) enables an adaptive reaction to recover ER proteostasis and cell function. The UPR is initiated by specialized stress sensors that engage gene expression programs through the concerted action of the transcription factors ATF4, ATF6f, and XBP1s. Although UPR signaling is generally studied as unique linear signaling branches, correlative evidence suggests that ATF6f and XBP1s may physically interact to regulate a subset of UPR target genes. In this study, we designed an ATF6f/XBP1s fusion protein termed UPRplus that behaves as a heterodimer in terms of its selective transcriptional activity. Cell-based studies demonstrated that UPRplus has a stronger effect in reducing the abnormal aggregation of mutant huntingtin and α-synuclein when compared to XBP1s or ATF6 alone. We developed a gene transfer approach to deliver UPRplus into the brain using adeno-associated viruses (AAVs) and demonstrated potent neuroprotection in vivo in preclinical models of Parkinson's disease and Huntington's disease. These results support the concept in which directing UPR-mediated gene expression toward specific adaptive programs may serve as a possible strategy to optimize the beneficial effects of the pathway in different disease conditions.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Enfermedades Neurodegenerativas/prevención & control , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box/metabolismo , Factor de Transcripción Activador 6/genética , Animales , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Proteína Huntingtina/genética , Masculino , Ratones , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Proteína 1 de Unión a la X-Box/genética , alfa-Sinucleína/genética
6.
EMBO J ; 35(8): 845-65, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26869642

RESUMEN

Disturbance of endoplasmic reticulum (ER) proteostasis is a common feature of amyotrophic lateral sclerosis (ALS). Protein disulfide isomerases (PDIs) areERfoldases identified as possibleALSbiomarkers, as well as neuroprotective factors. However, no functional studies have addressed their impact on the disease process. Here, we functionally characterized fourALS-linked mutations recently identified in two majorPDIgenes,PDIA1 andPDIA3/ERp57. Phenotypic screening in zebrafish revealed that the expression of thesePDIvariants induce motor defects associated with a disruption of motoneuron connectivity. Similarly, the expression of mutantPDIs impaired dendritic outgrowth in motoneuron cell culture models. Cellular and biochemical studies identified distinct molecular defects underlying the pathogenicity of thesePDImutants. Finally, targetingERp57 in the nervous system led to severe motor dysfunction in mice associated with a loss of neuromuscular synapses. This study identifiesERproteostasis imbalance as a risk factor forALS, driving initial stages of the disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Neuronas Motoras/patología , Procolágeno-Prolina Dioxigenasa/genética , Proteína Disulfuro Isomerasas/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Modificados Genéticamente , Electromiografía , Embrión no Mamífero , Estrés del Retículo Endoplásmico/genética , Humanos , Ratones Noqueados , Mutación , Neuritas/patología , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
7.
Acta Neuropathol ; 140(5): 737-764, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32642868

RESUMEN

Impaired neuronal proteostasis is a salient feature of many neurodegenerative diseases, highlighting alterations in the function of the endoplasmic reticulum (ER). We previously reported that targeting the transcription factor XBP1, a key mediator of the ER stress response, delays disease progression and reduces protein aggregation in various models of neurodegeneration. To identify disease modifier genes that may explain the neuroprotective effects of XBP1 deficiency, we performed gene expression profiling of brain cortex and striatum of these animals and uncovered insulin-like growth factor 2 (Igf2) as the major upregulated gene. Here, we studied the impact of IGF2 signaling on protein aggregation in models of Huntington's disease (HD) as proof of concept. Cell culture studies revealed that IGF2 treatment decreases the load of intracellular aggregates of mutant huntingtin and a polyglutamine peptide. These results were validated using induced pluripotent stem cells (iPSC)-derived medium spiny neurons from HD patients and spinocerebellar ataxia cases. The reduction in the levels of mutant huntingtin was associated with a decrease in the half-life of the intracellular protein. The decrease in the levels of abnormal protein aggregation triggered by IGF2 was independent of the activity of autophagy and the proteasome pathways, the two main routes for mutant huntingtin clearance. Conversely, IGF2 signaling enhanced the secretion of soluble mutant huntingtin species through exosomes and microvesicles involving changes in actin dynamics. Administration of IGF2 into the brain of HD mice using gene therapy led to a significant decrease in the levels of mutant huntingtin in three different animal models. Moreover, analysis of human postmortem brain tissue and blood samples from HD patients showed a reduction in IGF2 level. This study identifies IGF2 as a relevant factor deregulated in HD, operating as a disease modifier that buffers the accumulation of abnormal protein species.


Asunto(s)
Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Factor II del Crecimiento Similar a la Insulina/metabolismo , Agregación Patológica de Proteínas/metabolismo , Animales , Humanos , Factor II del Crecimiento Similar a la Insulina/farmacología , Ratones , Ratones Transgénicos , Agregado de Proteínas/efectos de los fármacos
8.
J Neuroeng Rehabil ; 17(1): 16, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32041623

RESUMEN

BACKGROUND: There is a lack of early (infant) mobility rehabilitation approaches that incorporate natural and complex environments and have the potential to concurrently advance motor, cognitive, and social development. The Grounded Early Adaptive Rehabilitation (GEAR) system is a pediatric learning environment designed to provide motor interventions that are grounded in social theory and can be applied in early life. Within a perceptively complex and behaviorally natural setting, GEAR utilizes novel body-weight support technology and socially-assistive robots to both ease and encourage mobility in young children through play-based, child-robot interaction. This methodology article reports on the development and integration of the different system components and presents preliminary evidence on the feasibility of the system. METHODS: GEAR consists of the physical and cyber components. The physical component includes the playground equipment to enrich the environment, an open-area body weight support (BWS) device to assist children by partially counter-acting gravity, two mobile robots to engage children into motor activity through social interaction, and a synchronized camera network to monitor the sessions. The cyber component consists of the interface to collect human movement and video data, the algorithms to identify the children's actions from the video stream, and the behavioral models for the child-robot interaction that suggest the most appropriate robot action in support of given motor training goals for the child. The feasibility of both components was assessed via preliminary testing. Three very young children (with and without Down syndrome) used the system in eight sessions within a 4-week period. RESULTS: All subjects completed the 8-session protocol, participated in all tasks involving the selected objects of the enriched environment, used the BWS device and interacted with the robots in all eight sessions. Action classification algorithms to identify early child behaviors in a complex naturalistic setting were tested and validated using the video data. Decision making algorithms specific to the type of interactions seen in the GEAR system were developed to be used for robot automation. CONCLUSIONS: Preliminary results from this study support the feasibility of both the physical and cyber components of the GEAR system and demonstrate its potential for use in future studies to assess the effects on the co-development of the motor, cognitive, and social systems of very young children with mobility challenges.


Asunto(s)
Relaciones Interpersonales , Limitación de la Movilidad , Actividad Motora , Aparatos Ortopédicos , Robótica/métodos , Algoritmos , Preescolar , Discapacidades del Desarrollo/rehabilitación , Síndrome de Down/rehabilitación , Femenino , Humanos , Lactante , Masculino
9.
Proc Natl Acad Sci U S A ; 111(18): 6804-9, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24753614

RESUMEN

Parkinson disease (PD) is characterized by the selective loss of dopaminergic neurons of the substantia nigra pars compacta (SNpc). Although growing evidence indicates that endoplasmic reticulum (ER) stress is a hallmark of PD, its exact contribution to the disease process is not well understood. Here we report that developmental ablation of X-Box binding protein 1 (XBP1) in the nervous system, a key regulator of the unfolded protein response (UPR), protects dopaminergic neurons against a PD-inducing neurotoxin. This survival effect was associated with a preconditioning condition that resulted from induction of an adaptive ER stress response in dopaminergic neurons of the SNpc, but not in other brain regions. In contrast, silencing XBP1 in adult animals triggered chronic ER stress and dopaminergic neuron degeneration. Supporting this finding, gene therapy to deliver an active form of XBP1 provided neuroprotection and reduced striatal denervation in animals injected with 6-hydroxydopamine. Our results reveal a physiological role of the UPR in the maintenance of protein homeostasis in dopaminergic neurons that may help explain the differential neuronal vulnerability observed in PD.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Factores de Transcripción/metabolismo , Animales , Supervivencia Celular , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Neuronas Dopaminérgicas/efectos de los fármacos , Estrés del Retículo Endoplásmico , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa , Neurotoxinas/toxicidad , Oxidopamina/toxicidad , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Factores de Transcripción del Factor Regulador X , Sustancia Negra/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box
10.
Hum Mol Genet ; 21(10): 2245-62, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22337954

RESUMEN

Mutations leading to expansion of a poly-glutamine track in Huntingtin (Htt) cause Huntington's disease (HD). Signs of endoplasmic reticulum (ER) stress have been recently reported in animal models of HD, associated with the activation of the unfolded protein response (UPR). Here we have investigated the functional contribution of ER stress to HD by targeting the expression of two main UPR transcription factors, XBP1 and ATF4 (activating transcription factor 4), in full-length mutant Huntingtin (mHtt) transgenic mice. XBP1-deficient mice were more resistant to developing disease features, associated with improved neuronal survival and motor performance, and a drastic decrease in mHtt levels. The protective effects of XBP1 deficiency were associated with enhanced macroautophagy in both cellular and animal models of HD. In contrast, ATF4 deficiency did not alter mHtt levels. Although, XBP1 mRNA splicing was observed in the striatum of HD transgenic brains, no changes in the levels of classical ER stress markers were detected in symptomatic animals. At the mechanistic level, we observed that XBP1 deficiency led to augmented expression of Forkhead box O1 (FoxO1), a key transcription factor regulating autophagy in neurons. In agreement with this finding, ectopic expression of FoxO1 enhanced autophagy and mHtt clearance in vitro. Our results provide strong evidence supporting an involvement of XBP1 in HD pathogenesis probably due to an ER stress-independent mechanism involving the control of FoxO1 and autophagy levels.


Asunto(s)
Autofagia , Proteínas de Unión al ADN/genética , Factores de Transcripción Forkhead/genética , Enfermedad de Huntington/genética , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , Factores de Transcripción del Factor Regulador X , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/genética , Proteína 1 de Unión a la X-Box
11.
IEEE Winter Conf Appl Comput Vis ; 2024: 6444-6454, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39171198

RESUMEN

Recent work on action recognition leverages 3D features and textual information to achieve state-of-the-art performance. However, most of the current few-shot action recognition methods still rely on 2D frame-level representations, often require additional components to model temporal relations, and employ complex distance functions to achieve accurate alignment of these representations. In addition, existing methods struggle to effectively integrate textual semantics, some resorting to concatenation or addition of textual and visual features, and some using text merely as an additional supervision without truly achieving feature fusion and information transfer from different modalities. In this work, we propose a simple yet effective Semantic-Aware Few-Shot Action Recognition (SAFSAR) model to address these issues. We show that directly leveraging a 3D feature extractor combined with an effective feature-fusion scheme, and a simple cosine similarity for classification can yield better performance without the need of extra components for temporal modeling or complex distance functions. We introduce an innovative scheme to encode the textual semantics into the video representation which adaptively fuses features from text and video, and encourages the visual encoder to extract more semantically consistent features. In this scheme, SAFSAR achieves alignment and fusion in a compact way. Experiments on five challenging few-shot action recognition benchmarks under various settings demonstrate that the proposed SAFSAR model significantly improves the state-of-the-art performance.

12.
IUBMB Life ; 65(12): 962-75, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24227223

RESUMEN

The endoplasmic reticulum (ER) is a key subcellular compartment involved in the folding and maturation of around one-third of the total proteome. Accumulation of misfolded proteins in the ER lumen engages a signal transduction pathway known as unfolded protein response (UPR) that feedback to recover ER homeostasis or to trigger apoptosis of irreversible damaged cells. The UPR is initiated by three main stress sensors including protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring protein 1α (IRE1α), which reprogram the genome through the control of downstream transcription factors. In this article, the authors have reviewed most relevant studies uncovering the physiological function of the UPR in different organs and tissues based on the phenotypes observed after genetic manipulation of the pathway in vivo. Biomedical applications of targeting the UPR on a disease context are also discussed.


Asunto(s)
Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Animales , Apoptosis , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Humanos , Ratones , Especificidad de Órganos , Fosforilación , Procesamiento Proteico-Postraduccional , Transducción de Señal , Factores de Transcripción/fisiología , eIF-2 Quinasa/metabolismo
13.
Mol Cell Neurosci ; 51(1-2): 1-11, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22828129

RESUMEN

The formation of the nervous systems requires processes that coordinate proliferation, differentiation and migration of neuronal cells, which extend axons, generate dendritic branching and establish synaptic connections during development. The structural organization and dynamic remodeling of the cytoskeleton and its association to the secretory pathway are critical determinants of cell morphogenesis and migration. Marlin-1 (Jakmip1) is a microtubule-associated protein predominantly expressed in neurons and lymphoid cells. Marlin-1 participates in polarized secretion in lymphocytes, but its functional association with the neuronal cytoskeleton and its contribution to brain development have not been explored. Combining in vitro and in vivo approaches we show that Marlin-1 contributes to the establishment of neuronal morphology. Marlin-1 associates to the cytoskeleton in neurites, is required for the maintenance of an intact Golgi apparatus and its depletion produces the down-regulation of kinesin-1, a plus-end directed molecular motor with a central function in morphogenesis and migration. RNA interference of Marlin-1 in vivo results in abnormal migration of newborn pyramidal neurons during the formation of the cortex. Our results support the involvement of Marlin-1 in the acquisition of the complex architecture and migration of pyramidal neurons, two fundamental processes for the laminar layering of the cortex.


Asunto(s)
Movimiento Celular , Neurogénesis , Células Piramidales/embriología , Proteínas de Unión al ARN/fisiología , Animales , Movimiento Celular/genética , Citoesqueleto/metabolismo , Femenino , Aparato de Golgi/metabolismo , Cinesinas/metabolismo , Ratones , Ratones Endogámicos BALB C , Neurogénesis/genética , Células Piramidales/metabolismo , Interferencia de ARN , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Ratas , Ratas Sprague-Dawley
14.
Brain Res Bull ; 196: 59-67, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36935053

RESUMEN

Astrocytes are active participants in the performance of the Central Nervous System (CNS) in both health and disease. During aging, astrocytes are susceptible to reactive astrogliosis, a molecular state characterized by functional changes in response to pathological situations, and cellular senescence, characterized by loss of cell division, apoptosis resistance, and gain of proinflammatory functions. This results in two different states of astrocytes, which can produce proinflammatory phenotypes with harmful consequences in chronic conditions. Reactive astrocytes and senescent astrocytes share morpho-functional features that are dependent on the organization of the cytoskeleton. However, such changes in the cytoskeleton have yet to receive the necessary attention to explain their role in the alterations of astrocytes that are associated with aging and pathologies. In this review, we summarize all the available findings that connect changes in the cytoskeleton of the astrocytes with aging. In addition, we discuss future avenues that we believe will guide such a novel topic.


Asunto(s)
Astrocitos , Citoesqueleto , Astrocitos/patología , Microtúbulos , Sistema Nervioso Central/patología
15.
IEEE Trans Pattern Anal Mach Intell ; 45(6): 7430-7443, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36441893

RESUMEN

There is a growing concern about typically opaque decision-making with high-performance machine learning algorithms. Providing an explanation of the reasoning process in domain-specific terms can be crucial for adoption in risk-sensitive domains such as healthcare. We argue that machine learning algorithms should be interpretable by design and that the language in which these interpretations are expressed should be domain- and task-dependent. Consequently, we base our model's prediction on a family of user-defined and task-specific binary functions of the data, each having a clear interpretation to the end-user. We then minimize the expected number of queries needed for accurate prediction on any given input. As the solution is generally intractable, following prior work, we choose the queries sequentially based on information gain. However, in contrast to previous work, we need not assume the queries are conditionally independent. Instead, we leverage a stochastic generative model (VAE) and an MCMC algorithm (Unadjusted Langevin) to select the most informative query about the input based on previous query-answers. This enables the online determination of a query chain of whatever depth is required to resolve prediction ambiguities. Finally, experiments on vision and NLP tasks demonstrate the efficacy of our approach and its superiority over post-hoc explanations.

16.
Antioxidants (Basel) ; 12(9)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37760092

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder, and no efficient therapy able to cure or slow down PD is available. In this study, dehydrated red cabbage was evaluated as a novel source of bio-compounds with neuroprotective capacity. Convective drying was carried out at different temperatures. Total phenolics (TPC), flavonoids (TFC), anthocyanins (TAC), and glucosinolates (TGC) were determined using spectrophotometry, amino acid profile by LC-DAD and fatty acid profile by GC-FID. Phenolic characterization was determined by liquid chromatography-high-resolution mass spectrometry. Cytotoxicity and neuroprotection assays were evaluated in SH-SY5Y human cells, observing the effect on preformed fibrils of α-synuclein. Drying kinetic confirmed a shorter processing time with temperature increase. A high concentration of bio-compounds was observed, especially at 90 °C, with TPC = 1544.04 ± 11.4 mg GAE/100 g, TFC = 690.87 ± 4.0 mg QE/100 g and TGC = 5244.9 ± 260.2 µmol SngE/100 g. TAC degraded with temperature. Glutamic acid and arginine were predominant. Fatty acid profiles were relatively stable and were found to be mostly C18:3n3. The neochlorogenic acid was predominant. The extracts had no cytotoxicity and showed a neuroprotective effect at 24 h testing, which can extend in some cases to 48 h. The present findings underpin the use of red cabbage as a functional food ingredient.

17.
IEEE Trans Biomed Eng ; 70(3): 1053-1061, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36129868

RESUMEN

OBJECTIVE: The diagnosis of urinary tract infection (UTI) currently requires precise specimen collection, handling infectious human waste, controlled urine storage, and timely transportation to modern laboratory equipment for analysis. Here we investigate holographic lens free imaging (LFI) to show its promise for enabling automatic urine analysis at the patient bedside. METHODS: We introduce an LFI system capable of resolving important urine clinical biomarkers such as red blood cells, white blood cells, crystals, and casts in 2 mm thick urine phantoms. RESULTS: This approach is sensitive to the particulate concentrations relevant for detecting several clinical urine abnormalities such as hematuria and pyuria, linearly correlating to ground truth hemacytometer measurements with R 2 = 0.9941 and R 2 = 0.9973, respectively. We show that LFI can estimate E. coli concentrations of 10 3 to 10 5 cells/mL by counting individual cells, and is sensitive to concentrations of 10 5 cells/mL to 10 8 cells/mL by analyzing hologram texture. Further, LFI measurements of blood cell concentrations are relatively insensitive to changes in bacteria concentrations of over seven orders of magnitude. Lastly, LFI reveals clear differences between UTI-positive and UTI-negative urine from human patients. CONCLUSION: LFI is sensitive to clinically-relevant concentrations of bacteria, blood cells, and other sediment in large urine volumes. SIGNIFICANCE: Together, these results show promise for LFI as a tool for urine screening, potentially offering early, point-of-care detection of UTI and other pathological processes.


Asunto(s)
Urinálisis , Infecciones Urinarias , Urinálisis/instrumentación , Urinálisis/métodos , Infecciones Urinarias/diagnóstico por imagen , Pruebas en el Punto de Atención/normas , Orina/citología , Orina/microbiología , Holografía , Humanos , Sensibilidad y Especificidad
18.
Cell Death Discov ; 9(1): 438, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042807

RESUMEN

Parkinson's disease (PD) is the second most common late-onset neurodegenerative disease and the predominant cause of movement problems. PD is characterized by motor control impairment by extensive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). This selective dopaminergic neuronal loss is in part triggered by intracellular protein inclusions called Lewy bodies, which are composed mainly of misfolded alpha-synuclein (α-syn) protein. We previously reported insulin-like growth factor 2 (IGF2) as a key protein downregulated in PD patients. Here we demonstrated that IGF2 treatment or IGF2 overexpression reduced the α-syn aggregates and their toxicity by IGF2 receptor (IGF2R) activation in cellular PD models. Also, we observed IGF2 and its interaction with IGF2R enhance the α-syn secretion. To determine the possible IGF2 neuroprotective effect in vivo we used a gene therapy approach in an idiopathic PD model based on α-syn preformed fibrils intracerebral injection. IGF2 gene therapy revealed a significantly preventing of motor impairment in idiopathic PD model. Moreover, IGF2 expression prevents dopaminergic neuronal loss in the SN together with a decrease in α-syn accumulation (phospho-α-syn levels) in the striatum and SN brain region. Furthermore, the IGF2 neuroprotective effect was associated with the prevention of synaptic spines loss in dopaminergic neurons in vivo. The possible mechanism of IGF2 in cell survival effect could be associated with the decrease of the intracellular accumulation of α-syn and the improvement of dopaminergic synaptic function. Our results identify to IGF2 as a relevant factor for the prevention of α-syn toxicity in both in vitro and preclinical PD models.

19.
NPJ Parkinsons Dis ; 9(1): 110, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443150

RESUMEN

The biological basis of the neurodegenerative movement disorder, Parkinson's disease (PD), is still unclear despite it being 'discovered' over 200 years ago in Western Medicine. Based on current PD knowledge, there are widely varying theories as to its pathobiology. The aim of this article was to explore some of these different theories by summarizing the viewpoints of laboratory and clinician scientists in the PD field, on the biological basis of the disease. To achieve this aim, we posed this question to thirteen "PD experts" from six continents (for global representation) and collated their personal opinions into this article. The views were varied, ranging from toxin exposure as a PD trigger, to LRRK2 as a potential root cause, to toxic alpha-synuclein being the most important etiological contributor. Notably, there was also growing recognition that the definition of PD as a single disease should be reconsidered, perhaps each with its own unique pathobiology and treatment regimen.

20.
Biochem Biophys Res Commun ; 420(3): 558-63, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22445760

RESUMEN

Huntington's disease (HD) is caused by mutations that expand a polyglutamine region in the amino-terminal domain of Huntingtin (Htt), leading to the accumulation of intracellular inclusions and progressive neurodegeneration. Recent reports indicate the engagement of endoplasmic reticulum (ER) stress responses in human HD post mortem samples and animal models of the disease. Adaptation to ER stress is mediated by the activation of the unfolded protein response (UPR), an integrated signal transduction pathway that attenuates protein folding stress by controlling the expression of distinct transcription factors including X-Box binding protein 1 (XBP1). Here we targeted the expression of XBP1 on a novel viral-based model of HD. We delivered an active form of XBP1 locally into the striatum of adult mice using adeno-associated vectors (AAVs) and co-expressed this factor with a large fragment of mutant Htt as a fusion protein with RFP (Htt588(Q95)-mRFP) to directly visualize the accumulation of Htt inclusions in the brain. Using this approach, we observed a significant reduction in the accumulation of Htt588(Q95)-mRFP intracellular inclusion when XBP1 was co-expressed in the striatum. These results contrast with recent findings indicating a protective effect of XBP1 deficiency in neurodegeneration using knockout mice, and suggest a potential use of gene therapy strategies to manipulate the UPR in the context of HD.


Asunto(s)
Cuerpo Estriado/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Enfermedad de Huntington/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/genética , Animales , Dependovirus , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/genética , Terapia Genética/métodos , Vectores Genéticos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Factores de Transcripción del Factor Regulador X , Transducción Genética , Proteína 1 de Unión a la X-Box
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA