Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Molecules ; 27(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36144512

RESUMEN

Polypyrrole (PPy) is an interesting conducting polymer due to its good environmental stability, high conductivity, and biocompatibility. The association between PPy and metallic nanoparticles has been widely studied since it enhances electrochemical properties. In this context, gold ions are reduced to gold nanoparticles (AuNPs) directly on the polymer surface as PPy can be oxidized to an overoxidized state. This work proposes the PPy electrochemical synthesis followed by the direct reduction of gold on its surface in a fast reaction. The modified electrodes were characterized by electronic microscopic and infrared spectroscopy. The effect of reduction time on the electrochemical properties was evaluated by the electrocatalytic properties of the obtained material from the oxidation of ascorbic acid (AA) and electrochemical impedance spectroscopy studies. The presence of AuNPs improved the AA electrocatalysis by reducing oxidation potential and lowering charge transfer resistance. EIS data were fitted using a transmission line model. The results indicated an increase in the electronic transport of the polymeric film in the presence of AuNPs. However, PPy overoxidation occurs when the AuNPs' deposition is higher than 30 s. In PPy/AuNPs 15 s, smaller and less agglomerated particles were formed with fewer PPy overoxidized, confirming the observed electrocatalytic behavior.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Ácido Ascórbico , Técnicas Biosensibles/métodos , Oro/química , Iones , Polímeros/química , Pirroles/química
2.
Mikrochim Acta ; 186(7): 398, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31183568

RESUMEN

Polypyrrole (PPy) was electrochemically synthesized with charge control on the surface of a steel mesh. Two different morphologies (globular and nanotubular) were created and characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The modified electrodes were used as extraction phases in solid-phase extraction (SPE) and electrochemically controlled solid-phase extraction (EC-SPE) of atrazine, caffeine and progesterone. Raman spectroscopy was employed for the structural characterization of PPy after long exposure to the analytes. The electrochemical behavior was studied by cyclic voltammetry which revealed the higher capacitive behavior of polypyrrole nanotubes because of the huge superficial area, also no electrocatalytical behavior was observed evidencing the strong adsorption of the analytes on the PPy surface. The effects of the PPy oxidation state on the extraction performance were evaluated by in-situ electrochemical sorption experiments. The sorption capacity was evaluated by gas chromatography coupled to mass spectrometry (GC-MS). The method displays good stability, repeatability and reproducibility. The limits of detection range between 1.7-16.7 µg L-1. Following the extraction of river water samples, it was possible to identify the presence of other endogenous organic compounds besides the analytes of interest. This indicates the potential of the method and material developed in this work. Graphical abstract Schematic representation of a steel mesh electrode covered with polypyrrole nanotubes used as extraction phase for separation of contaminants from aqueous samples. The oxidation level of polypyrrole was electrochemically tuned by which the adsorption of analytes is deeply affected.


Asunto(s)
Atrazina/aislamiento & purificación , Cafeína/aislamiento & purificación , Nanotubos/química , Polímeros/química , Progesterona/aislamiento & purificación , Pirroles/química , Extracción en Fase Sólida/métodos , Adsorción , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Cromatografía de Gases y Espectrometría de Masas , Límite de Detección , Reproducibilidad de los Resultados
3.
Anal Methods ; 16(15): 2164-2176, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38536084

RESUMEN

This short review presents the latest advances in the field of electrochemical biosensors, focusing particularly on impedimetric biosensors for the direct measurement of analytes. As a source of study we have chosen to describe these advances in the latest global health crisis originated from the COVID-19 pandemic, initiated by the SARS-CoV-2 virus. In this period, the necessity for swift and precise detection methods has grown rapidly due to an imminent need for the development of an analytical method to identify and isolate infected patients as an attempt to control the spreading of the disease. Traditional approaches such as the enzyme-linked immunosorbent assay (ELISA), were extensively used during the SARS-CoV-2 pandemic, but their drawbacks, including slow response time, became evident. In this context, the potential of electrochemical biosensors as an alternative for COVID-19 detection was emphasized. These biosensors merge electrochemical technology with bioreceptors, offering benefits such as rapidity, accuracy, portability, and real-time result provision. Additionally, we present instances of electrochemical biosensors modified with conductive polymers, eliminating the necessity for an electrochemical probe. The adaptability of the developed materials and devices facilitated the prompt production of electrochemical biosensors during the pandemic, creating opportunities for broader applications in infectious disease diagnosis.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Conductividad Eléctrica , Ensayo de Inmunoadsorción Enzimática
4.
Biosens Bioelectron ; 249: 115937, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211465

RESUMEN

Helicobacter pylori (H. pylori) is classified as a class I carcinogen that colonizes the human gastrointestinal (GI) tract. The detection at low concentrations is crucial in combatting H. pylori. HopQ protein is located on H. pylori's outer membrane and is expressed at an early stage of contamination, which signifies it as an ideal biomarker. In this study, we presented the development of an electrochemical impedimetric immunosensor for the ultra-sensitive detection of HopQ at low concentrations. The sensor employed polypyrrole nanotubes (PPy-NTs) and carboxylated multi-walled carbon nanotubes (MWCNT-COOH) nanocomposite. PPy-NTs were chosen for their excellent conductivity, biocompatibility, and redox capabilities, simplifying sample preparation by eliminating the need to add redox probes upon measurement. MWCNT-COOH provided covalent binding sites for HopQ antibodies (HopQ-Ab) on the biosensor surface. Characterization of the biosensor was performed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), contact angle measurements, and electrochemical impedance spectroscopy (EIS), complemented by numerical semiempirical quantum calculations. The results demonstrated a dynamic linear range of 5 pg/mL to 1.063 ng/mL and an excellent selectivity, with the possibility of excluding interference using EIS data, specifically charge transfer resistance and double-layer capacitance as multivariants for the calibration curve. Using two EIS components, the limit of detection is calculated to be 2.06 pg/mL. The biosensor was tested with a spiked drinking water sample and showed a signal recovery of 105.5% when detecting 300 pg/mL of HopQ. This novel H. pylori biosensor offers reliable, simple, portable, and rapid screening of the bacteria.


Asunto(s)
Técnicas Biosensibles , Helicobacter pylori , Nanocompuestos , Nanotubos de Carbono , Humanos , Polímeros/química , Nanotubos de Carbono/química , Pirroles/química , Proteínas de la Membrana , Técnicas Biosensibles/métodos , Inmunoensayo , Biomarcadores , Nanocompuestos/química , Electrodos , Técnicas Electroquímicas/métodos , Límite de Detección
5.
Polymers (Basel) ; 15(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36772040

RESUMEN

An electrochemical sensor for the pesticide Pirimicarb (PMC) has been developed. A screen-printed electrode (SPCE) was used and modified with the conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) and gold nanoparticles (AuNPs) to enhance electrochemical proprieties. Electrode characterizations were performed using scattering electron microscopy (SEM) and cyclic voltammetry (CV). With the SPCE/PEDOT:PSS/AuNPs modified electrode, a new peak at 1.0 V appeared in the presence of PMC related to the PMC oxidation. To elucidate the mechanism of PMC oxidation, Gas Chromatography-Mass Spectrometry (GC-MS), where two major peaks were identified, evidencing that the device can both detect and degrade PMC by an electro-oxidation process. Exploring this peak signal, it was possible the sensor development, performing detection from 93.81-750 µmol L-1, limits of quantification (LOQ) and detection (LOD) of 93.91 µmol L-1 and 28.34 µmol L-1, respectively. Thus, it was possible to study and optimization of PMC degradation, moreover, to perform detection at low concentrations and with good selectivity against different interferents using a low-cost printed electrode based on graphite modified with conductive polymer and AuNPs.

6.
Langmuir ; 28(6): 3332-7, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22260213

RESUMEN

The electrochromic behavior of iron complexes derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) and a hexacyanoferrate species in polyelectrolytic multilayer adsorbed films is described for the first time. This complex macromolecule was deposited onto indium-tin oxide (ITO) substrates via self-assembly, and the morphology of the modified electrodes was studied using atomic force microscopy (AFM), which indicated that the hybrid film containing the polyelectrolyte multilayer and the iron complex was highly homogeneous and was approximately 50 nm thick. The modified electrodes exhibited excellent electrochromic behavior with both intense and persistent coloration as well as a chromatic contrast of approximately 70%. In addition, this system achieved high electrochromic efficiency (over 70 cm(2) C(-1) at 630 nm) and a response time that could be measured in milliseconds. The electrode was cycled more than 10(3) times, indicating excellent stability.

7.
Biosensors (Basel) ; 12(11)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36354479

RESUMEN

In this study, polypyrrole nanotubes (PPy-NT) and gold nanoparticles (AuNPs) were electrochemically synthesized to form a hybrid material and used as an electroactive layer for the attachment of proteins for the construction of a high-performance biosensor. Besides the enhancement of intrinsic conductivity of the PPy-NT, the AuNPs act as an anchor group for the formation of self-assembly monolayers (SAMs) from the gold-sulfur covalent interaction between gold and Mercaptopropionic acid (MPA). This material was used to evaluate the viability and performance of the platform developed for biosensing, and three different biological approaches were tested: first, the Avidin-HRP/Biotin couple and characterizations were made by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), wherein we detected Biotin in a linear range of 100-900 fmol L-1. The studies continued with folate group biomolecules, using the folate receptor α (FR-α) as a bioreceptor. Tests with anti-FR antibody detection were performed, and the results obtained indicate a linear range of detection from 0.001 to 6.70 pmol L-1. The same FR-α receptor was used for Folic Acid detection, and the results showed a limit of detection of 0.030 nmol L-1 and a limit of quantification of 90 pmol L-1. The results indicate that the proposed biosensor is sensitive and capable of operating in a range of clinical interests.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanotubos , Oro/química , Polímeros/química , Pirroles/química , Ácido Fólico , Biotina , Nanopartículas del Metal/química , Técnicas Biosensibles/métodos , Electrodos , Técnicas Electroquímicas , Límite de Detección
8.
Anal Chem ; 83(14): 5804-8, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21644592

RESUMEN

The development of the first all-diamond hydrodynamic flow device for electroanalytical applications is described. Here alternate layers of intrinsic (insulating), conducting (heavily boron doped), and intrinsic polycrystalline diamond are grown to create a sandwich structure. By laser cutting a hole through the material, it is possible to produce a tubular flow ring electrode of a characteristic length defined by the thickness of the conducting layer (for these studies ∼90 µm). The inside of the tube can be polished to 17 ± 10 nm surface roughness using a diamond impregnanted wire resulting in a coplanar, smooth, all-diamond surface. The steady-state limiting current versus volume flow rate characteristics for the one electron oxidation of FcTMA(+) are in agreement with those expected for laminar flow in a tubular electrode geometry. For dopamine detection, it is shown that the combination of the reduced fouling properties of boron doped diamond, coupled with the flow geometry design where the products of electrolysis are washed away downstream of the electrode, completely eradicates fouling during electrolysis. This paves the way for incorporation of this flow design into online electroanalytical detection systems. Finally, the all diamond tubular flow electrode system described here provides a platform for future developments including the development of ultrathin ring electrodes, multiple apertures for increased current response, and multiple, individually addressable ring electrodes incorporated into the same flow tube.


Asunto(s)
Boro/química , Diamante/química , Microelectrodos , Electrólisis , Diseño de Equipo , Oxidación-Reducción , Propiedades de Superficie
9.
Int J Biol Macromol ; 173: 109-117, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33476624

RESUMEN

Although polyaniline (PANI) is a widely investigated conductive polymer for biological applications, studies addressing the biocompatibility of colloidal PANI dispersions are scarcely found in the literature of the area. Therefore, PANI nanoparticles stabilized by the natural polysaccharide gum Arabic (GA) were screened for their biocompatibility. The GA successfully stabilized the colloidal PANI-GA dispersions when exposed to a protein-rich medium, showing compatibility with the biological environment. The results obtained from a series of in vitro assays showed that, after up to 48 h of exposure to a range of PANI-GA concentrations (1-50 µg/mL), both mouse BALB/3T3 fibroblasts and RAW 264.7 macrophages showed no evidence of change in cellular proliferation, viability and metabolic activity. An increase in macrophage granularity poses as evidence of phagocytic uptake of PANI-GA, without resulting activation of this cell type. Additionally, the PANI-GA nanoparticles modulated the cell morphology changes induced on fibroblasts by GA in a concentration-dependent manner. Thus, this unprecedented biocompatibility study of PANI nanoparticles stabilized by a plant gum exudate polysaccharide showed promising results. This simple biomaterial might be further developed into colloidal formulations for biological and biomedical applications, taking advantage of its versatility, biocompatibility, and conductive properties.


Asunto(s)
Compuestos de Anilina/farmacología , Materiales Biocompatibles/farmacología , Goma Arábiga/farmacología , Nanocompuestos/química , Compuestos de Anilina/química , Animales , Materiales Biocompatibles/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Coloides , Goma Arábiga/química , Ratones , Células 3T3 NIH , Nanocompuestos/ultraestructura , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo
10.
Ultrason Sonochem ; 16(1): 35-40, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18722799

RESUMEN

The present paper describes the physical-chemical characterization and electrochemical behavior of a new nanomaterial formed by the addition of cadmium and cobalt atoms into the structure of nickel hydroxide nanoparticles, these ones synthesized by an easy sonochemical method. Particles of about 5 nm diameter were obtained and characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction and Raman spectroscopy. Different nickel hydroxide nanoparticles were immobilized onto transparent conducting substrates by using electrostatic layer-by-layer providing thin films at the nanoscale and the electrochemical behavior was investigated. The formation of a mixed hydroxide was corroborated by observation of very interesting properties as redox potential shifting to less positive potentials and high stability when submitted to long electrochemical cycling or high times of ultrasonic synthesis, suggesting practical applications.

12.
J Nanosci Nanotechnol ; 7(9): 3221-6, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18019153

RESUMEN

Nickel hydroxide nanoparticles with different amounts of cobalt atoms in the structure forming a unique material, were synthesized by using ultrasonic radiation. The particles of 5 nm diameter were prepared and characterized by X-Ray diffraction, Raman and Infrared spectroscopies, and thermogravimetry. The incorporation of cobalt leads to distinct crystalline planes, showing an opened and disarranged structure, indicating the stabilization of the alpha-Ni(OH)2 phase.


Asunto(s)
Cobalto/química , Hidróxidos/química , Nanopartículas del Metal/química , Níquel/química , Química/métodos , Electroquímica/métodos , Microscopía Electrónica de Transmisión , Modelos Químicos , Oxidación-Reducción , Espectrofotometría Infrarroja/métodos , Espectrometría Raman/métodos , Especificidad por Sustrato , Termogravimetría/métodos , Difracción de Rayos X
13.
Carbohydr Polym ; 155: 11-18, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-27702494

RESUMEN

Electroactive hydrogels were prepared using commercial citric pectin, either raw (PC) or purified through dialysis (dPC), and chemically synthesized polypyrrole (PPy). 1H NMR analyses showed that PC is a low methoxyl pectin (degree of methoxylation, DM=46%) and dPC is a high methoxyl pectin (DM=77%). The pyrrole polymerization was monitored through UV-vis spectroscopy and both samples were observed to be good stabilizers for PPy in aqueous medium. The dispersions were used to prepare the hydrogels h-PC-PPy and h-dPC-PPy. The hydrogel h-dPC-PPy has a higher swelling index (SI≈25%) at pH 1.2 than the hydrogel h-PC-PPy (SI≈7%). Contrastingly, at pH 6.8 both hydrogels lost their mechanical integrity. Raman spectroscopy revealed that PPy is more oxidized in h-PC-PPy. Nevertheless, both hydrogels are electroactive and therefore can be considered for applications in which the control of the degree of swelling is desired.

14.
Carbohydr Polym ; 119: 35-43, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25563942

RESUMEN

Electroactive nanoparticles combining gum arabic (GA) and polyaniline (PANI) were prepared by chemical synthesis. The gum consists of highly branched anionic polysaccharides with some protein content. GA was structurally modified by Smith controlled degradation, in order to reduce its degree of branching (GAD), aiming the elucidation of the relationship between the structure and the properties of complex polysaccharides. The modification was studied by SEC, GC-MS, (13)C NMR and colorimetric methods. GAD has lower molecular mass, lower degree of branching and lower uronic acid content. Besides it is enriched in galactose and protein when compared with GA. The obtained composites (GA-PANI and GAD-PANI) were thoroughly characterized. Although the use of both polysaccharides (GA and GAD) produced highly stable electroactive nanoparticles, the best combination of properties was achieved for GA-PANI. The sample GAD was not able to prevent the occurrence of crosslinking between PANI chains, possibly due to its lower microstructural complexity which diminishes the occurrence of hydrogen bonds between the polymers.


Asunto(s)
Electroquímica/métodos , Goma Arábiga/química , Nanopartículas/química , Compuestos de Anilina/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Cromatografía en Gel , Técnicas Electroquímicas , Electrodos , Luz , Metilación , Peso Molecular , Monosacáridos/análisis , Nanocompuestos/química , Refractometría , Dispersión de Radiación , Espectrometría Raman
15.
J Colloid Interface Sci ; 434: 18-27, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25154299

RESUMEN

Herein we show the synthesis and characterization of water dispersible composites formed by poly(aniline) and the natural polymer gum Arabic (GA), used as stabilizer. The materials were synthesized via a rapid and straightforward method and were fully characterized by different techniques such as UV-Vis, Raman, FTIR, TEM, SEM and cyclic voltammetry. TEM and SEM images revealed that the proportion of stabilizer highly influences the growth mechanism of the nanostructures. It was found spherical particles, elongated structures and large agglomerates at the lower, intermediate and at the higher GA amount, respectively. Accordingly to fluorescence spectra, different hydrophobic structures are formed depending on the GA amount in aqueous solutions, possibly acting as hosting sites for the PANI growth. In order to further study the PANI polymerization in the presence of GA, kinetics experiments were performed and showed that nucleation is the limiting step for the composite growth and a model is proposed. Spectroscopic experiments showed that the presence of GA affects the PANI conformation, avoiding the formation of phenazine structures which highly impairs the electroactivity of PANI. The material integrity is achieved by strong hydrogen bond interactions between PANI and GA as evidenced by the study of specific NH bands in FTIR and Raman analyses. The intensity of the hydrogen bonds decreased upon higher amounts of GA, probably due to steric impediment around the NH sites. Cyclic voltammograms showed a good electroactivity behavior of the modified electrodes presenting distinguishable diffusional processes through the adsorbed composites. By this way, we have thoroughly investigated the formation and properties of new conducting polymer composite materials. Taken into account the low toxicity of GA and the excellent dispersity in water, the materials can successfully be applied in bioelectrochemical applications or as green corrosion inhibitors.

16.
Langmuir ; 23(12): 6796-800, 2007 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-17489619

RESUMEN

Nanoparticles of a Prussian blue (PB) analogue, copper hexacyanoferrate, were synthesized by using ultrasonic radiation and characterized by spectroscopic and electrochemical techniques. The nanoparticles (ca. 10 nm diameter) were immobilized onto transparent indium tin oxide electrodes by electrostatic layer-by-layer deposition. These modified electrodes showed interesting electrochromic properties, changing the coloration during the redox process from brown to orange when oxidized. The nanostructured electrode presented high stability, in contrast to that observed for PB nanoparticles; this fact must be related to the maintenance of the electrostatic assembly because the oxidized compound, CuII/FeIII(CN)6, still possesses a negative excess of charge due to the high number of cyanide groups that link the nanoparticles with the polycation, assuring the integrity of the whole electrostatic assembled film.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA