Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(49): e2213120119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36459641

RESUMEN

We report the effects of aspartame on anxiety-like behavior, neurotransmitter signaling and gene expression in the amygdala, a brain region associated with the regulation of anxiety and fear responses. C57BL/6 mice consumed drinking water containing 0.015% or 0.03% aspartame, a dose equivalent of 8 to 15% of the FDA recommended maximum human daily intake, or plain drinking water. Robust anxiety-like behavior (evaluated using open field test and elevated zero maze) was observed in male and female mice consuming the aspartame-containing water. Diazepam, an allosteric modulator of the GABA-A receptor, alleviated the anxiety-like behavior. RNA sequencing of the amygdala followed by KEGG biological pathway analysis of differentially expressed genes showed glutamatergic and GABAergic synapse pathways as significantly enriched. Quantitative PCR showed upregulation of mRNA for the glutamate NMDA receptor subunit 2D (Grin2d) and metabotropic receptor 4 (Grm4) and downregulation of the GABA-A receptor associated protein (Gabarap) mRNA. Thus, taken together, our diazepam and gene expression data show that aspartame consumption shifted the excitation-inhibition equilibrium in the amygdala toward excitation. Even more strikingly, the anxiety-like behavior, its response to diazepam, and changes in amygdala gene expression were transmitted to male and female offspring in two generations descending from the aspartame-exposed males. Extrapolation of the findings to humans suggests that aspartame consumption at doses below the FDA recommended maximum daily intake may produce neurobehavioral changes in aspartame-consuming individuals and their descendants. Thus, human population at risk of aspartame's potential mental health effects may be larger than current expectations, which only include aspartame-consuming individuals.


Asunto(s)
Agua Potable , Ácido Glutámico , Humanos , Femenino , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Aspartame , Receptores de GABA-A , Ansiedad/inducido químicamente , Ansiedad/genética , Amígdala del Cerebelo , Diazepam , ARN Mensajero , Expresión Génica , Ácido gamma-Aminobutírico
2.
Am J Physiol Cell Physiol ; 326(3): C768-C783, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38314723

RESUMEN

Arrestin domain containing 2 and 3 (Arrdc2/3) are genes whose mRNA contents are decreased in young skeletal muscle following mechanical overload. Arrdc3 is linked to the regulation of signaling pathways in nonmuscle cells that could influence skeletal muscle size. Despite a similar amino acid sequence, Arrdc2 function remains undefined. The purpose of this study was to further explore the relationship of Arrdc2/Arrdc3 expression with changes in mechanical load in young and aged muscle and define the effect of Arrdc2/3 expression on C2C12 myotube diameter. In young and aged mice, mechanical load was decreased using hindlimb suspension whereas mechanical load was increased by reloading previously unloaded muscle or inducing high-force contractions. Arrdc2 and Arrdc3 mRNAs were overexpressed in C2C12 myotubes using adenoviruses. Myotube diameter was determined 48-h posttransfection, and RNA sequencing was performed on those samples. Arrdc2 and Arrdc3 mRNA content was higher in the unloaded muscle within 1 day of disuse and remained higher up through 10 days. The induction of Arrdc2 mRNA was more pronounced in aged muscle than young muscle in response to unloading. Reloading previously unloaded muscle of young and aged mice restored Arrdc2 and Arrdc3 levels to ambulatory levels. Increasing mechanical load beyond normal ambulatory levels lowered Arrdc2 mRNA, but not Arrdc3 mRNA, in young and aged muscle. Arrdc2 overexpression only was sufficient to lower myotube diameter in C2C12 cells in part by altering the transcriptome favoring muscle atrophy. These data are consistent with Arrdc2 contributing to disuse atrophy, particularly in aged muscle.NEW & NOTEWORTHY We establish Arrdc2 as a novel mechanosensitive gene highly induced in response to mechanical unloading, particularly in aged muscle. Arrdc2 induction in C2C12 myotubes is sufficient to produce thinner myotubes and a transcriptional landscape consistent with muscle atrophy and disuse.


Asunto(s)
Fibras Musculares Esqueléticas , Trastornos Musculares Atróficos , Animales , Ratones , Músculo Esquelético , Atrofia Muscular/genética , Envejecimiento/genética , ARN Mensajero/genética , Arrestinas
3.
Glia ; 71(2): 450-466, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36300569

RESUMEN

The transcription factor Yin Yang 1 (YY1) is ubiquitously expressed in mammalian cells, regulating the expression of a variety of genes involved in proliferation, differentiation, and apoptosis in a context-dependent manner. While it is well-established that global YY1 knockout (KO) leads to embryonic death in mice and that YY1 deletion in neurons or oligodendrocytes induces impaired brain function, the role of astrocytic YY1 in the brain remains unknown. We investigated the role of astrocytic YY1 in the brain using a glial fibrillary acidic protein (GFAP)-specific YY1 conditional KO (YY1 cKO) mouse model to delete astrocytic YY1. Astrocytic YY1 cKO mice were tested for behavioral phenotypes, such as locomotor activity, coordination, and cognition, followed by an assessment of relevant biological pathways using RNA-sequencing analysis, immunoblotting, and immunohistochemistry in the cortex, midbrain, and cerebellum. YY1 cKO mice showed abnormal phenotypes, movement deficits, and cognitive dysfunction. At the molecular level, astrocytic YY1 deletion altered the expression of genes associated with proliferation and differentiation, p53/caspase apoptotic pathways, oxidative stress response, and inflammatory signaling including NF-κB, STAT, and IRF in all regions. Astrocytic YY1 deletion significantly increased the expression of GFAP as astrocytic activation and Iba1 as microglial activation, indicating astrocytic YY1 deletion activated microglia as well. Accordingly, multiple inflammatory cytokines and chemokines including TNF-α and CXCL10 were elevated. Combined, these novel findings suggest that astrocytic YY1 is a critical transcription factor for normal brain development and locomotor activity, motor coordination, and cognition. Astrocytic YY1 is also essential in preventing pathological oxidative stress, apoptosis, and inflammation.


Asunto(s)
Factor de Transcripción YY1 , Yin-Yang , Ratones , Animales , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo , Apoptosis , Inflamación , Estrés Oxidativo , Encéfalo/metabolismo , Mamíferos/metabolismo
4.
Am J Physiol Endocrinol Metab ; 321(5): E606-E620, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34541876

RESUMEN

Circadian rhythms are central to optimal physiological function, as disruption contributes to the development of several chronic diseases. Alcohol (EtOH) intoxication disrupts circadian rhythms within liver, brain, and intestines, but it is unknown whether alcohol also disrupts components of the core clock in skeletal muscle. Female C57BL/6Hsd mice were randomized to receive either saline (control) or alcohol (EtOH) (5 g/kg) via intraperitoneal injection at the start of the dark cycle [Zeitgeber time (ZT12)], and gastrocnemius was collected every 4 h from control and EtOH-treated mice for the next 48 h following isoflurane anesthetization. In addition, metyrapone was administered before alcohol intoxication in separate mice to determine whether the alcohol-induced increase in serum corticosterone contributed to circadian gene regulation. Finally, synchronized C2C12 myotubes were treated with alcohol (100 mM) to assess the influence of centrally or peripherally mediated effects of alcohol on the muscle clock. Alcohol significantly disrupted mRNA expression of Bmal1, Per1/2, and Cry1/2 in addition to perturbing the circadian pattern of clock-controlled genes, Myod1, Dbp, Tef, and Bhlhe40 (P < 0.05), in muscle. Alcohol increased serum corticosterone levels and glucocorticoid target gene, Redd1, in muscle. Metyrapone prevented the EtOH-mediated increase in serum corticosterone but did not normalize the EtOH-induced change in Per1, Cry1 and Cry2, and Myod1 mRNA expression. Core clock gene expression (Bmal, Per1/2, and Cry1/2) was not changed following 4, 8, or 12 h of alcohol treatment on synchronized C2C12 myotubes. Therefore, binge alcohol disrupted genes of the core molecular clock independently of elevated serum corticosterone or direct effects of EtOH on the muscle.NEW & NOTEWORTHY Alcohol is a myotoxin that impairs skeletal muscle metabolism and function following either chronic consumption or acute binge drinking; however, mechanisms underlying alcohol-related myotoxicity have not been fully elucidated. Herein, we demonstrate that alcohol acutely interrupts oscillation of skeletal muscle core clock genes, and this is neither a direct effect of ethanol on the skeletal muscle, nor an effect of elevated serum corticosterone, a major clock regulator.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Ritmo Circadiano/efectos de los fármacos , Glucocorticoides/metabolismo , Músculo Esquelético/metabolismo , Intoxicación Alcohólica/sangre , Animales , Ritmo Circadiano/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Metirapona/farmacología , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética
6.
BMC Genomics ; 18(1): 237, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28302071

RESUMEN

BACKGROUND: A variety of neurological disorders, including Alzheimer's disease, Parkinson's disease, major depressive disorder, dyslexia and autism, are differentially prevalent between females and males. To better understand the possible molecular basis for the sex-biased nature of neurological disorders, we used a developmental series of female and male mice at 1, 2, and 4 months of age to assess both mRNA and protein in the hippocampus with RNA-sequencing and mass-spectrometry, respectively. RESULTS: The transcriptomic analysis identifies 2699 genes that are differentially expressed between animals of different ages. The bulk of these differentially expressed genes are changed in both sexes at one or more ages, but a total of 198 transcripts are differentially expressed between females and males at one or more ages. The number of transcripts that are differentially expressed between females and males is greater in adult animals than in younger animals. Additionally, we identify 69 transcripts that show complex and sex-specific patterns of temporal regulation through postnatal development, 8 of which are heat-shock proteins. We also find a modest correlation between levels of mRNA and protein in the mouse hippocampus (Rho = 0.53). CONCLUSION: This study adds to the substantial body of evidence for transcriptomic regulation in the hippocampus during postnatal development. Additionally, this analysis reveals sex differences in the transcriptome of the developing mouse hippocampus, and further clarifies the need to include both female and male mice in longitudinal studies involving molecular changes in the hippocampus.


Asunto(s)
Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Hipocampo/metabolismo , Organogénesis/genética , Proteoma , Proteómica , Transcriptoma , Animales , Biología Computacional/métodos , Femenino , Hipocampo/crecimiento & desarrollo , Masculino , Ratones , Ratones Transgénicos , Proteómica/métodos , Factores Sexuales
7.
J Extracell Biol ; 3(1): e133, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38938678

RESUMEN

Extracellular vesicles (EVs) secreted by human-induced pluripotent stem cells (hiPSCs) have great potential as cell-free therapies in various diseases, including prevention of blood-brain barrier senescence and stroke. However, there are still challenges in pre-clinical and clinical use of hiPSC-EVs due to the need for large-scale production of a large quantity. Vertical-Wheel bioreactors (VWBRs) have design features that allow the biomanufacturing of hiPSC-EVs using a scalable aggregate or microcarrier-based culture system under low shear stress. EV secretion by undifferentiated hiPSCs expanded as 3-D aggregates and on Synthemax II microcarriers in VWBRs were investigated. Additionally, two types of EV collection media, mTeSR and HBM, were compared. The hiPSCs were characterized by metabolite and transcriptome analysis as well as EV biogenesis markers. Protein and microRNA cargo were analysed by proteomics and microRNA-seq, respectively. The in vitro functional assays of microglia stimulation and proliferation were conducted. HiPSCs expanded as 3-D aggregates and on microcarriers had comparable cell number, while microcarrier culture had higher glucose consumption, higher glycolysis and lower autophagy gene expression based on mRNA-seq. The microcarrier cultures had at least 17-23 fold higher EV secretion, and EV collection in mTeSR had 2.7-3.7 fold higher yield than HBM medium. Microcarrier culture with mTeSR EV collection had a smaller EV size than other groups, and the cargo was enriched with proteins (proteomics) and miRNAs (microRNA-seq) reducing apoptosis and promoting cell proliferation (e.g. Wnt-related pathways). hiPSC-EVs demonstrated the ability of stimulating proliferation and M2 polarization of microglia in vitro. HiPSC expansion on microcarriers produces much higher yields of EVs than hiPSC aggregates in VWBRs. EV collection in mTeSR increases yield compared to HBM. The biomanufactured EVs from microcarrier culture in mTeSR have exosomal characteristics and are functional in microglia stimulation, which paves the ways for future in vivo anti-aging study.

8.
Pilot Feasibility Stud ; 8(1): 16, 2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35065656

RESUMEN

BACKGROUND: The National Institutes of Health Obesity-Related Behavioral Intervention Trials model for intervention development was used to establish the feasibility and proof of concept of a motivational ketogenic nutrition adherence program for older adults with mild cognitive impairment. METHODS: This was a single-arm, single-center feasibility trial. A comprehensive assessment protocol, including a clinical interview, neuropsychological testing, and genetic sequencing was used as an initial screening. Nine participants (aged 64-75) with possible amnestic mild cognitive impairment were consented for the intervention. Participants completed pre- and post-intervention neuropsychological assessments using the updated Repeatable Battery for Assessment of Neuropsychological Status. Participants tracked their macronutrient consumption using food diaries and ketone levels using urinalysis test strips daily. Mood and other psychosocial variables were collected through surveys, and qualitative exit interviews were completed. RESULTS: 100% of participants who began the trial completed the 6-week ketogenic nutrition adherence program, including completion of the pre- and post-assessments. Eight participants achieved measurable levels of ketones during the program. The average self-rated adherence across the program was 8.7 out of 10. A Wilcoxon Signed-Rank test demonstrated significant improvement in cognitive performance from baseline (median = 88) to follow up (median = 96, Z = - 2.26, p = .024). The average difference in cognitive performance from baseline to follow-up was - 7.33 (95% CI - 12.85, - 1.82). CONCLUSIONS: Results supported the feasibility for moving to the next phase and demonstrated proof of concept for the intervention. The next step is a randomized pilot trial to test clinical signals of effect compared to a control condition. TRIAL REGISTRATION: This trial was retrospectively registered with clinicaltrials.gov on July 13, 2021. The trial number is NCT04968041.

9.
Mol Cell Endocrinol ; 550: 111652, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35461977

RESUMEN

Glucocorticoids are released in response to acute aerobic exercise. The objective was to define changes in the expression of glucocorticoid target genes in skeletal muscle in response to acute aerobic exercise at different times of day. We identified glucocorticoid target genes altered in skeletal muscle by acute exercise by comparing data sets from rodents subjected to acute aerobic exercise in the light or dark cycles to data sets from C2C12 myotubes treated with glucocorticoids. The role of glucocorticoid receptor signaling and REDD1 protein in mediating gene expression was assessed in exercised mice. Changes to expression of glucocorticoid genes were greater when exercise occurred in the dark cycle. REDD1 was required for the induction of genes induced at both times of day. In all, the time of day at which aerobic exercise is conducted dictates changes to the expression of glucocorticoid target genes in skeletal muscle with REDD1 contributing to those changes.


Asunto(s)
Glucocorticoides , Músculo Esquelético , Condicionamiento Físico Animal , Animales , Ritmo Circadiano , Glucocorticoides/genética , Glucocorticoides/metabolismo , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
J Psychopharmacol ; 35(10): 1188-1203, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34291671

RESUMEN

BACKGROUND/AIMS: Neonatal quinpirole (NQ) treatment to rats increases dopamine D2 (DAD2) receptor sensitivity in adult animals. We investigated if increased DAD2 sensitivity would be passed to the next (F1) generation, and if these animals demonstrated sensorimotor gating deficits and enhanced behavioral responses to nicotine. METHODS: Male and female rats were intraperitoneal (IP) administered quinpirole (1 mg/kg) or saline (NS) from postnatal day (P)1-21. Animals were either behaviorally tested (F0) or raised to P60 and mated, creating F1 offspring. RESULTS: Experiment 1 revealed that F1 generation animals that were the offspring of at least one NQ-treated founder increased yawning behavior, a DAD2-mediated behavioral event, in response to acute quinpirole (0.1 mg/kg). F1 generation rats also demonstrated increased striatal ß arrestin-2 and decreased phospho-AKT signaling, consistent with increased G-protein independent DAD2 signaling, which was equal to F0 NQ-treated founders, although this was not observed in all groups. RNA-Seq analysis revealed significant gene expression changes in the F1 generation that were offspring of both NQ-treated founders compared to F0 NQ founders and controls, with enrichment in sensitivity to stress hormones and cell signaling pathways. In Experiment 2, all F1 generation offspring demonstrated sensorimotor gating deficits compared to controls, which were equivalent to F0 NQ-treated founders. In Experiment 3, all F1 generation animals demonstrated enhanced nicotine behavioral sensitization and nucleus accumbens (NAcc) brain-derived neurotrophic factor (BDNF) protein. Further, F1 generation rats demonstrated enhanced adolescent nicotine conditioned place preference equivalent to NQ-treated founders conditioned with nicotine. CONCLUSIONS: This represents the first demonstration of transgenerational effects of increased DAD2 sensitivity in a rodent model.


Asunto(s)
Nicotina/farmacología , Quinpirol/farmacología , Receptores de Dopamina D2/metabolismo , Filtrado Sensorial/efectos de los fármacos , Animales , Animales Recién Nacidos , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Agonistas de Dopamina/farmacología , Femenino , Masculino , Núcleo Accumbens/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
11.
Physiol Rep ; 8(6): e14396, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32189431

RESUMEN

Heart disease remains the number one killer of women in the US. Nonetheless, studies in women and female animal models continue to be underrepresented in cardiac research. Hypertrophic cardiomyopathy (HCM), the most commonly inherited cardiac disorder, has been tied to sarcomeric protein variants in both sexes. Among the susceptible genes, TNNC1-encoding cardiac troponin C (cTnC)-causes a substantial HCM phenotype in mice. Mice bearing an HCM-associated cTnC-A8V point mutation exhibited a significant decrease in stroke volume and left ventricular diameter and volume. Importantly, isovolumetric contraction time was significantly higher for female HCM mice. We utilized a transcriptomic approach to investigate the basis underlying the sexual dimorphism observed in the cardiac physiology of adult male and female HCM mice. RNA sequencing revealed several altered canonical pathways within the HCM mice versus WT groups including an increase in eukaryotic initiation factor 2 signaling, integrin-linked kinase signaling, actin nucleation by actin-related protein-Wiskott-Aldrich syndrome family protein complex, regulation of actin-based motility by Rho kinase, vitamin D receptor/retinoid X receptor activation, and glutathione redox reaction pathways. In contrast, valine degradation, tricarboxylic acid cycle II, methionine degradation, and inositol phosphate compound pathways were notably down-regulated in HCM mice. These down-regulated pathways may be reduced in response to altered energetics in the hypertrophied hearts and may represent conservation of energy as the heart is compensating to meet increased contractile demands. HCM male versus female mice followed similar trends of the canonical pathways altered between HCM and WT. In addition, seven of the differentially expressed genes in both WT and HCM male versus female comparisons swapped directions in fold-change between the sexes. These findings suggest a sexually-dimorphic HCM phenotype due to a sarcomeric mutation and pinpoint several key targetable pathways and genes that may provide the means to alleviate the more severe decline in female cardiac function.


Asunto(s)
Cardiomiopatía Hipertrófica/metabolismo , Caracteres Sexuales , Transcriptoma , Troponina C/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Hemodinámica , Masculino , Ratones Transgénicos , Troponina C/genética
12.
J Comp Neurol ; 527(2): 462-475, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30291623

RESUMEN

Alzheimer's disease is a progressive neurodegenerative disorder and the most common form of dementia. Like many neurological disorders, Alzheimer's disease has a sex-biased epidemiological profile, affecting approximately twice as many women as men. The cause of this sex difference has yet to be elucidated. To identify molecular correlates of this sex bias, we investigated molecular pathology in females and males using the 5XFamilial Alzheimer's disease mutations (5XFAD) genetic mouse model of Alzheimer's disease. We profiled the transcriptome and proteome of the mouse hippocampus during early stages of disease development (1, 2, and 4 months of age). Our analysis reveals 42 genes that are differentially expressed between disease and wild-type animals at 2 months of age, prior to observable plaque deposition. In 4-month-old animals, we detect 1,316 differentially expressed transcripts between transgenic and control 5XFAD mice, many of which are associated with immune function. Additionally, we find that some of these transcriptional perturbations are correlated with altered protein levels in 4-month-old transgenic animals. Importantly, our data indicate that female 5XFAD mouse exhibit more profound pathology than their male counterparts as measured by differences in gene expression. We also find that the 5XFAD transgenes are more highly expressed in female 5XFAD mice than their male counterparts, which could partially account for the sex-biased molecular pathology observed in this dataset.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Hipocampo/metabolismo , Hipocampo/patología , Caracteres Sexuales , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Placa Amiloide/metabolismo , Placa Amiloide/patología , Proteoma , ARN Mensajero/metabolismo , Transcriptoma
13.
Sci Rep ; 9(1): 326, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30674965

RESUMEN

Fibrosis is characterized by excessive production of type I collagen. Biosynthesis of type I collagen in fibrosis is augmented by binding of protein LARP6 to the 5' stem-loop structure (5'SL), which is found exclusively in type I collagen mRNAs. A high throughput screen was performed to discover inhibitors of LARP6 binding to 5'SL, as potential antifibrotic drugs. The screen yielded one compound (C9) which was able to dissociate LARP6 from 5' SL RNA in vitro and to inactivate the binding of endogenous LARP6 in cells. Treatment of hepatic stellate cells (liver cells responsible for fibrosis) with nM concentrations of C9 reduced secretion of type I collagen. In precision cut liver slices, as an ex vivo model of hepatic fibrosis, C9 attenuated the profibrotic response at 1 µM. In prophylactic and therapeutic animal models of hepatic fibrosis C9 prevented development of fibrosis or hindered the progression of ongoing fibrosis when administered at 1 mg/kg. Toxicogenetics analysis revealed that only 42 liver genes changed expression after administration of C9 for 4 weeks, suggesting minimal off target effects. Based on these results, C9 represents the first LARP6 inhibitor with significant antifibrotic activity.


Asunto(s)
Colágeno Tipo I/metabolismo , Regulación hacia Abajo , Inhibidores Enzimáticos/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , Cirrosis Hepática/tratamiento farmacológico , Ribonucleoproteínas/antagonistas & inhibidores , Animales , Autoantígenos , Células Cultivadas , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/uso terapéutico , Humanos , Modelos Biológicos , Ratas Wistar , Resultado del Tratamiento , Antígeno SS-B
14.
Sci Rep ; 9(1): 11055, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31363137

RESUMEN

Current brain spheroids or organoids derived from human induced pluripotent stem cells (hiPSCs) still lack a microglia component, the resident immune cells in the brain. The objective of this study is to engineer brain region-specific organoids from hiPSCs incorporated with isogenic microglia-like cells in order to enhance immune function. In this study, microglia-like cells were derived from hiPSCs using a simplified protocol with stage-wise growth factor induction, which expressed several phenotypic markers, including CD11b, IBA-1, CX3CR1, and P2RY12, and phagocytosed micron-size super-paramagnetic iron oxides. The derived cells were able to upregulate pro-inflammatory gene (TNF-α) and secrete anti-inflammatory cytokines (i.e., VEGF, TGF-ß1, and PGE2) when stimulated with amyloid ß42 oligomers, lipopolysaccharides, or dexamethasone. The derived isogenic dorsal cortical (higher expression of TBR1 and PAX6) and ventral (higher expression of NKX2.1 and PROX1) spheroids/organoids displayed action potentials and synaptic activities. Co-culturing the microglia-like cells (MG) with the dorsal (D) or ventral (V) organoids showed differential migration ability, intracellular Ca2+ signaling, and the response to pro-inflammatory stimuli (V-MG group had higher TNF-α and TREM2 expression). Transcriptome analysis exhibited 37 microglia-related genes that were differentially expressed in MG and D-MG groups. In addition, the hybrid D-MG spheroids exhibited higher levels of immunoreceptor genes in activating members, but the MG group contained higher levels for most of genes in inhibitory members (except SIGLEC5 and CD200). This study should advance our understanding of the microglia function in brain-like tissue and establish a transformative approach to modulate cellular microenvironment toward the goal of treating various neurological disorders.


Asunto(s)
Encéfalo/metabolismo , Microglía/metabolismo , Esferoides Celulares/metabolismo , Péptidos beta-Amiloides/farmacología , Encéfalo/efectos de los fármacos , Diferenciación Celular , Movimiento Celular , Citocinas/metabolismo , Dexametasona/farmacología , Humanos , Células Madre Pluripotentes Inducidas , Lipopolisacáridos/farmacología , Microglía/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Esferoides Celulares/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
15.
J Comp Neurol ; 525(15): 3360-3387, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28685836

RESUMEN

We analyzed the transcriptome of the C57BL/6J mouse hypothalamus, hippocampus, neocortex, and cerebellum to determine estrous cycle-specific changes in these four brain regions. We found almost 16,000 genes are present in one or more of the brain areas but only 210 genes, ∼1.3%, are significantly changed as a result of the estrous cycle. The hippocampus has the largest number of differentially expressed genes (DEGs) (82), followed by the neocortex (76), hypothalamus (63), and cerebellum (26). Most of these DEGs (186/210) are differentially expressed in only one of the four brain regions. A key finding is the unique expression pattern of growth hormone (Gh) and prolactin (Prl). Gh and Prl are the only DEGs to be expressed during only one stage of the estrous cycle (metestrus). To gain insight into the function of the DEGs, we examined gene ontology and phenotype enrichment and found significant enrichment for genes associated with myelination, hormone stimulus, and abnormal hormone levels. Additionally, 61 of the 210 DEGs are known to change in response to estrogen in the brain. 50 of the 210 genes differentially expressed as a result of the estrous cycle are related to myelin and oligodendrocytes and 12 of the 63 DEGs in the hypothalamus are oligodendrocyte- and myelin-specific genes. This transcriptomic analysis reveals that gene expression in the female mouse brain is remarkably stable during the estrous cycle and demonstrates that the genes that do fluctuate are functionally related.


Asunto(s)
Cerebelo/metabolismo , Ciclo Estral/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Neocórtex/metabolismo , Transcriptoma/fisiología , Animales , Femenino , Expresión Génica/fisiología , Perfilación de la Expresión Génica , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN
16.
J Neurotrauma ; 34(1): 204-212, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27161121

RESUMEN

Traumatic brain injury (TBI) results in a progressive disease state with many adverse and long-term neurological consequences. Mesenchymal stem cells (MSCs) have emerged as a promising cytotherapy and have been previously shown to reduce secondary apoptosis and cognitive deficits associated with TBI. Consistent with the established literature, we observed that systemically administered human MSCs (hMSCs) accumulate with high specificity at the TBI lesion boundary zone known as the penumbra. Substantial work has been done to illuminate the mechanisms by which MSCs, and the bioactive molecules they secrete, exert their therapeutic effect. However, no such work has been published to examine the effect of MSC treatment on gene expression in the brain post-TBI. In the present study, we use high-throughput RNA sequencing (RNAseq) of cortical tissue from the TBI penumbra to assess the molecular effects of both TBI and subsequent treatment with intravenously delivered hMSCs. RNAseq revealed that expression of almost 7000 cortical genes in the penumbra were differentially regulated by TBI. Pathway analysis using the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database revealed that TBI regulated a large number of genes belonging to pathways involved in metabolism, receptor-mediated cell signaling, neuronal plasticity, immune cell recruitment and infiltration, and neurodegenerative disease. Remarkably, hMSC treatment was found to normalize 49% of all genes disrupted by TBI, with notably robust normalization of specific pathways within the categories mentioned above, including neuroactive receptor-ligand interactions (57%), glycolysis and gluconeogenesis (81%), and Parkinson's disease (100%). These data provide evidence in support of the multi-mechanistic nature of stem cell therapy and suggest that hMSC treatment is capable of simultaneously normalizing a wide variety of important molecular pathways that are disrupted by brain injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/terapia , Corteza Cerebral/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Administración Intravenosa , Animales , Lesiones Traumáticas del Encéfalo/genética , Expresión Génica , Humanos , Redes y Vías Metabólicas/fisiología , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
17.
J Comp Neurol ; 524(13): 2696-710, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-26917114

RESUMEN

Identifying sex differences in gene expression within the brain is critical for determining why multiple neurological and behavioral disorders differentially affect males and females. Several disorders are more common or severe in males (e.g., autism and schizophrenia) or in females (e.g., Alzheimer's disease and depression). We analyzed transcriptomic data from the mouse hippocampus of six inbred strains (129S1/SvImJ, A/J, C57BL/6J, DBA/1J, DBA/2J, and PWD/Ph) to provide a perspective on differences between male and female gene expression. Our data show that 1) gene expression differences in males vs. females varies substantially across the strains, 2) only a few genes are differentially expressed across all of the strains (termed core genes), and 3) >2,600 genes differ in the individual strain comparisons (termed noncore genes). We found that DBA/2J uniquely has a substantial majority (89%) of differentially expressed genes (DEGs) that are more highly expressed in females than in males (female-biased); 129/SvImJ has a majority (69%) of DEGs that are more highly expressed in males. To gain insight into the function of the DEGs, we examined gene ontology and pathway and phenotype enrichment and found significant enrichment in phenotypes related to abnormal nervous system morphology and physiology, among others. In addition, several pathways are enriched significantly, including Alzheimer's disease (AD), with 32 genes implicated in AD, eight of which are male-biased. Three of the male-biased genes have been implicated in a neuroprotective role in AD. Our transcriptomic data provide new insight into the possible genetic bases for sex-specific susceptibility and severity of brain disorders. J. Comp. Neurol. 524:2696-2710, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Hipocampo/fisiología , Enfermedades del Sistema Nervioso/genética , Índice de Severidad de la Enfermedad , Caracteres Sexuales , Animales , Femenino , Redes Reguladoras de Genes/genética , Hipocampo/patología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Endogámicos , Enfermedades del Sistema Nervioso/patología , Especificidad de la Especie
18.
PLoS One ; 10(9): e0139103, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26414157

RESUMEN

Drugs of abuse modify behavior by altering gene expression in the brain. Gene expression can be regulated by changes in DNA methylation as well as by histone modifications, which alter chromatin structure, DNA compaction and DNA accessibility. In order to better understand the molecular mechanisms directing drug-induced changes in chromatin structure, we examined DNA-nucleosome interactions within promoter regions of 858 genes in human neuroblastoma cells (SH-SY5Y) exposed to nicotine or cocaine. Widespread, drug- and time-resolved repositioning of nucleosomes was identified at the transcription start site and promoter region of multiple genes. Nicotine and cocaine produced unique and shared changes in terms of the numbers and types of genes affected, as well as repositioning of nucleosomes at sites which could increase or decrease the probability of gene expression based on DNA accessibility. Half of the drug-induced nucleosome positions approximated a theoretical model of nucleosome occupancy based on physical and chemical characteristics of the DNA sequence, whereas the basal or drug naïve positions were generally DNA sequence independent. Thus we suggest that nucleosome repositioning represents an initial dynamic genome-wide alteration of the transcriptional landscape preceding more selective downstream transcriptional reprogramming, which ultimately characterizes the cell- and tissue-specific responses to drugs of abuse.


Asunto(s)
Cocaína/farmacología , Epigénesis Genética/efectos de los fármacos , Nicotina/farmacología , Nucleosomas/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Regulación de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Humanos , Nucleosomas/efectos de los fármacos , Regiones Promotoras Genéticas/genética
19.
G3 (Bethesda) ; 6(1): 221-33, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26596646

RESUMEN

The developmental transition to motherhood requires gene expression changes that alter the brain to drive the female to perform maternal behaviors. We broadly examined the global transcriptional response in the mouse maternal brain, by examining four brain regions: hypothalamus, hippocampus, neocortex, and cerebellum, in virgin females, two pregnancy time points, and three postpartum time points. We find that overall there are hundreds of differentially expressed genes, but each brain region and time point shows a unique molecular signature, with only 49 genes differentially expressed in all four regions. Interestingly, a set of "early-response genes" is repressed in all brain regions during pregnancy and postpartum stages. Several genes previously implicated in underlying postpartum depression change expression. This study serves as an atlas of gene expression changes in the maternal brain, with the results demonstrating that pregnancy, parturition, and postpartum maternal experience substantially impact diverse brain regions.


Asunto(s)
Encéfalo/metabolismo , Regulación de la Expresión Génica , Periodo Posparto , Animales , Conducta Animal , Análisis por Conglomerados , Biología Computacional/métodos , Depresión Posparto/genética , Femenino , Perfilación de la Expresión Génica , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Ratones , Fenotipo , Embarazo , Transcriptoma
20.
Front Neurosci ; 8: 257, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25191221

RESUMEN

Neurons of the mammalian neocortex are produced by proliferating cells located in the ventricular zone (VZ) lining the lateral ventricles. This is a complex and sequential process, requiring precise control of cell cycle progression, fate commitment and differentiation. We have analyzed publicly available databases from mouse and human to identify candidate genes that are potentially involved in regulating early neocortical development and neurogenesis. We used a mouse in situ hybridization dataset (The Allen Institute for Brain Science) to identify 13 genes (Cdon, Celsr1, Dbi, E2f5, Eomes, Hmgn2, Neurog2, Notch1, Pcnt, Sox3, Ssrp1, Tead2, Tgif2) with high correlation of expression in the proliferating cells of the VZ of the neocortex at early stages of development (E15.5). We generated a similar human brain network using microarray and RNA-seq data (BrainSpan Atlas) and identified 407 genes with high expression in the developing human VZ and subventricular zone (SVZ) at 8-9 post-conception weeks. Seven of the human genes were also present in the mouse VZ network. The human and mouse networks were extended using available genetic and proteomic datasets through GeneMANIA. A gene ontology search of the mouse and human networks indicated that many of the genes are involved in the cell cycle, DNA replication, mitosis and transcriptional regulation. The reported involvement of Cdon, Celsr1, Dbi, Eomes, Neurog2, Notch1, Pcnt, Sox3, Tead2, and Tgif2 in neural development or diseases resulting from the disruption of neurogenesis validates these candidate genes. Taken together, our knowledge-based discovery method has validated the involvement of many genes already known to be involved in neocortical development and extended the potential number of genes by 100's, many of which are involved in functions related to cell proliferation but others of which are potential candidates for involvement in the regulation of neocortical development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA