Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mar Drugs ; 21(9)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37755094

RESUMEN

Sea anemones are known to produce a diverse array of toxins with different cysteine-rich peptide scaffolds in their venoms. The serine peptidase inhibitors, specifically Kunitz inhibitors, are an important toxin family that is believed to function as defensive peptides, as well as prevent proteolysis of other secreted anemone toxins. In this study, we isolated three serine peptidase inhibitors named Anthopleura cascaia peptide inhibitors I, II, and III (ACPI-I, ACPI-II, and ACPI-III) from the venom of the endemic Brazilian sea anemone A. cascaia. The venom was fractionated using RP-HPLC, and the inhibitory activity of these fractions against trypsin was determined and found to range from 59% to 93%. The spatial distribution of the anemone peptides throughout A. cascaia was observed using mass spectrometry imaging. The inhibitory peptides were found to be present in the tentacles, pedal disc, and mesenterial filaments. We suggest that the three inhibitors observed during this study belong to the venom Kunitz toxin family on the basis of their similarity to PI-actitoxin-aeq3a-like and the identification of amino acid residues that correspond to a serine peptidase binding site. Our findings expand our understanding of the diversity of toxins present in sea anemone venom and shed light on their potential role in protecting other venom components from proteolysis.

2.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36232883

RESUMEN

Pain is a worldwide public health problem and its treatment is still a challenge since clinically available drugs do not completely reverse chronic painful states or induce undesirable effects. Crotalphine is a 14 amino acids synthetic peptide that induces a potent and long-lasting analgesic effect on acute and chronic pain models, peripherally mediated by the endogenous release of dynorphin A and the desensitization of the transient receptor potential ankyrin 1 (TRPA1) receptor. However, the effects of crotalphine on the central nervous system (CNS) and the signaling pathway have not been investigated. Thus, the central effect of crotalphine was evaluated on the partial sciatic nerve ligation (PSNL)-induced chronic neuropathic pain model. Crotalphine (100 µg/kg, p.o.)-induced analgesia on the 14th day after surgery lasting up to 24 h after administration. This effect was prevented by intrathecal administration of CB1 (AM251) or CB2 (AM630) cannabinoid receptor antagonists. Besides that, crotalphine-induced analgesia was reversed by CTOP, nor-BNI, and naltrindole, antagonists of mu, kappa, and delta-opioid receptors, respectively, and also by the specific antibodies for ß-endorphin, dynorphin-A, and met-enkephalin. Likewise, the analgesic effect of crotalphine was blocked by the intrathecal administration of minocycline, an inhibitor of microglial activation and proliferation. Additionally, crotalphine decreased the PSNL-induced IL-6 release in the spinal cord. Importantly, in vitro, crotalphine inhibited LPS-induced CD86 expression and upregulated CD206 expression in BV-2 cells, demonstrating a polarization of microglial cells towards the M2 phenotype. These results demonstrated that crotalphine, besides activating opioid and cannabinoid analgesic systems, impairs central neuroinflammation, confirming the neuromodulatory mechanism involved in the crotalphine analgesic effect.


Asunto(s)
Analgesia , Cannabinoides , Neuralgia , Aminoácidos/metabolismo , Analgésicos/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos Opioides/metabolismo , Ancirinas/metabolismo , Antagonistas de Receptores de Cannabinoides/uso terapéutico , Cannabinoides/uso terapéutico , Dinorfinas/metabolismo , Encefalina Metionina/metabolismo , Humanos , Interleucina-6/metabolismo , Lipopolisacáridos/metabolismo , Microglía/metabolismo , Minociclina/uso terapéutico , Neuralgia/metabolismo , Péptidos , Fenotipo , Receptores Opioides/metabolismo , Médula Espinal , betaendorfina/metabolismo
3.
Molecules ; 26(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064778

RESUMEN

Kynurenic acid (KYNA) is derived from tryptophan, formed by the kynurenic pathway. KYNA is being widely studied as a biomarker for neurological and cardiovascular diseases, as it is found in ischemic conditions as a protective agent; however, little is known about its effect after ischemia-reperfusion in the vascular system. We induced ischemia for 30 min followed by 5 min reperfusion (I/R) in the rat aorta for KYNA evaluation using functional assays combined with proteomics. KYNA recovered the exacerbated contraction induced by phenylephrine and relaxation induced by acetylcholine or sodium nitroprussiate in the I/R aorta, with vessel responses returning to values observed without I/R. The functional recovery can be related to the antioxidant activity of KYNA, which may be acting on the endothelium-injury prevention, especially during reperfusion, and to proteins that regulate neurotransmission and cell repair/growth, expressed after the KYNA treatment. These proteins interacted in a network, confirming a protein profile expression for endothelium and neuron repair after I/R. Thus, the KYNA treatment had the ability to recover the functionality of injured ischemic-reperfusion aorta, by tissue repairing and control of neurotransmitter release, which reinforces its role in the post-ischemic condition, and can be useful in the treatment of such disease.


Asunto(s)
Aorta/patología , Ácido Quinurénico/uso terapéutico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Proteómica , Acetilcolina/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/fisiopatología , Modelos Animales de Enfermedad , Ácido Quinurénico/farmacología , Contracción Miocárdica/efectos de los fármacos , Daño por Reperfusión Miocárdica/fisiopatología , Nitroprusiato/farmacología , Fenilefrina/farmacología , Mapas de Interacción de Proteínas/efectos de los fármacos , Ratas Sprague-Dawley , Vasodilatación/efectos de los fármacos
4.
J Pept Sci ; 23(1): 68-76, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28054409

RESUMEN

Efficient drug delivery systems are currently one of the greatest challenges in pharmacokinetics, and the transposition of the gap between in vitro candidate molecule and in vivo test drug is, sometimes, poles apart. In this sense, the cell-penetrating peptides (CPP) may be the bridge uniting these worlds. Here, we describe a technique to rapidly identify unlabeled CPPs after incubation with liposomes, based on commercial desalting (size exclusion) columns and liquid chromatography-MS/MS, for peptide de novo sequencing. Using this approach, we found it possible to identify one new CPP - interestingly, a classical bradykinin-potentiating peptide - in the peptide-rich low molecular mass fraction of the Bothrops jararaca venom, which was also able to penetrate live cell membranes, as confirmed by classical approaches employing fluorescence-labeled analogues of this CPP. Moreover, both the labeled and unlabeled CPPs caused no metabolic, cell-cycle or morphologic alterations, proving to be unmistakably cargo deliverers and not drugs themselves. In sum, we have developed and validated a method for screening label-free peptides for CPP activity, regardless of their biological origin, which could lead to the identification of new and more efficient drug delivery systems. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Asunto(s)
Péptidos de Penetración Celular/aislamiento & purificación , Venenos de Crotálidos/química , Sistemas de Liberación de Medicamentos/métodos , Secuencia de Aminoácidos , Animales , Transporte Biológico , Bothrops/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Cromatografía en Gel , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Hallazgos Incidentales , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Liposomas/química , Liposomas/metabolismo , Peso Molecular , Análisis de Secuencia de Proteína , Espectrometría de Masas en Tándem
5.
J Proteomics ; 274: 104824, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36646272

RESUMEN

Among the scorpions found in Brazil, Tityus bahiensis is one of the species that causes most of the reported human accidents. In spite of this important constatation, the venom composition description is not available in the literature. Thus, this venom remains not properly studied, segregating this particular species into an abandoned, forgotten condition. In the present study, chromatographic separation (RP-HPLC-C18) and proteomic analyses were employed to unravel the diversity, complexity, and proportional distribution of the main peptides and proteins found in the scorpion venom. Moreover, sequence analyses and the presence of new isoforms and toxins are discussed based on a database comparison with other Tityus toxins. Our results show the presence of a wide diversity of potassium and sodium channel toxins and enzymes, such as metallopeptidases and hyaluronidases, as previously described for other species. However, the current work also describes for the first time, at the protein level, phospholipase, angiotensin-converting enzyme, cysteine-rich proteins, serine peptidase inhibitors peptides, and antimicrobial peptides. Finally, thorough data analyses allowed the description of the venom toxins distribution regarding their diversity and relative quantity. SIGNIFICANCE: The work presents the first Tityus bahiensis proteome. We have focused on describing the neurotoxin variability in terms of their isoforms/amino acid substitutions. Understanding the natural variations in the toxins' sequences is essential, once the affinity of these peptides to their respective receptors/ionic channels will vary depending on the specific peptide sequences. Moreover, the current study describes some proteins present in the venom, including enzymes being described for the first time in scorpion venoms, such as PLA2 and ACE. Moreover, we describe the individual relative quantity distribution for the different protein classes identified, as well as their variability in the T.bahiensis venom. Finally, this study also reports the development of a simple straightforward chromatographic method for scorpion venom fractionation.


Asunto(s)
Venenos de Escorpión , Escorpiones , Animales , Humanos , Escorpiones/metabolismo , Proteómica , Secuencia de Aminoácidos , Péptidos/metabolismo , Venenos de Escorpión/química
6.
Artículo en Inglés | MEDLINE | ID: mdl-38053575

RESUMEN

Background: Echinometra lucunter is a sea urchin commonly found on America's rocky shores. Its coelomic fluid contains molecules used for defense and biological processes, which may have therapeutic potential for the treatment of amyloid-based neurodegenerative diseases, such as Alzheimer's, that currently have few drug options available. Methods: In this study, we incubated E. lucunter coelomic fluid (ELCF) and fractions obtained by solid phase extraction in SH-SY5Y neuron-like cells to evaluate their effect on cell viability caused by the oligomerized amyloid peptide 42 (Aß42o). Moreover, the Aß42o was quantified after the incubation with ELCF fractions in the presence or not of cells, to evaluate if samples could cause amyloid peptide disaggregation. Antioxidant activity was determined in ELCF fractions, and cells were evaluated to check the oxidative stress after incubation with samples. The most relevant fraction was analyzed by mass spectrometry for identification of molecules. Results: ELCF and certain fractions could prevent and treat the reduction of cell viability caused by Aß42o in SH-SY5Y neuron-like cells. We found that one fraction (El50) reduced the oligomerized Aß42 and the oxidative stress caused by the amyloid peptide through its antioxidant molecules, which in turn reduced cell death. Mass spectrometry analysis revealed that El50 comprises small molecules containing flavonoid antioxidants, such as phenylpyridazine and dihydroquercetin, and two peptides. Conclusion: Our results suggest that sea urchin molecules may interact with Aß42o and oxidative stress, preventing or treating neurotoxicity, which may be useful in treating dementia.

7.
Biomed Pharmacother ; 149: 112920, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-36068779

RESUMEN

Since the COVID-19 pandemic started, mesenchymal stromal cells (MSC) appeared as a therapeutic option to reduce the over-activated inflammatory response and promote recovery of lung damage. Most clinical studies use intravenous injection for MSC delivery, raising several concerns of thrombogenic risk due to MSC procoagulant activity (PCA) linked to the expression of tissue factor (TF/CD142). This is the first study that demonstrated procoagulant activity of TF+ human immature dental pulp stromal cells (hIDPSC, NestaCell® product) with the percentage of TF+ cells varied from 0.2% to 63.9% in plasma of healthy donors and COVID-19 heparin-treated patients. Thrombogenic risk of TF+ hIDPSCs was evaluated by rotational thromboelastometry (in vitro) and in critically ill COVID-19 patients (clinical trial). We showed that the thromboelastography is not enough to predict the risk of TF+ MSC therapies. Using TF-negative HUVEC cells, we demonstrated that TF is not a unique factor responsible for the cell's procoagulant activity. However, heparin treatment minimizes MSC procoagulant (in vitro). We also showed that the intravenous infusion of hIDPSCs with prophylactic enoxaparin administration in moderate to critically ill COVID-19 patients did not change the values of D-dimer, neither in the PT and PTT times. Our COVID-19 clinical study measured and selected the therapeutic cells with low TF (less than 25% of TF+ hIDPSCs). Our data indicate that the concomitant administration of enoxaparin and low TF-loaded is safe even for critically ill COVID-19 patients.


Asunto(s)
COVID-19 , Tromboplastina , Tratamiento Basado en Trasplante de Células y Tejidos , Ensayos Clínicos como Asunto , Enfermedad Crítica , Enoxaparina/farmacología , Enoxaparina/uso terapéutico , Heparina , Humanos , Pandemias , Tromboplastina/metabolismo
8.
Microorganisms ; 10(1)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35056621

RESUMEN

The secretion of α-hemolysin by uropathogenic Escherichia coli (UPEC) is commonly associated with the severity of urinary tract infections, which makes it a predictor of poor prognosis among patients. Accordingly, this toxin has become a target for diagnostic tests and therapeutic interventions. However, there are several obstacles associated with the process of α-hemolysin purification, therefore limiting its utilization in scientific investigations. In order to overcome the problems associated with α-hemolysin expression, after in silico prediction, a 20.48 kDa soluble α-hemolysin recombinant denoted rHlyA was constructed. This recombinant is composed by a 182 amino acid sequence localized in the aa542-723 region of the toxin molecule. The antigenic determinants of the rHlyA were estimated by bioinformatics analysis taking into consideration the tertiary form of the toxin, epitope analysis tools, and solubility inference. The results indicated that rHlyA has three antigenic domains localized in the aa555-565, aa600-610, and aa674-717 regions. Functional investigation of rHlyA demonstrated that it has hemolytic activity against sheep red cells, but no cytotoxic effect against epithelial bladder cells. In summary, the results obtained in this study indicate that rHlyA is a soluble recombinant protein that can be used as a tool in studies that aim to understand the mechanisms involved in the hemolytic and cytotoxic activities of α-hemolysin produced by UPEC. In addition, rHlyA can be applied to generate monoclonal and/or polyclonal antibodies that can be utilized in the development of diagnostic tests and therapeutic interventions.

9.
J Venom Res ; 11: 26-33, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34123362

RESUMEN

Belonging to the Viperidae family, Bothrops moojeni are widely distributed in South America, tropical savanna ecoregion (Cerrado) of Argentina, Bolivia, Brazil, and Paraguay with medical importance in Brazil. Accidents caused by this species have a rapid local action with the development of tissue inflammation, causing erythema, pain, and increased clotting time, which can culminate in gangrene or tissue necrosis. Bothrops moojeni venom has a rich composition that remains underexplored, which is of utmost importance, both for elucidating the envenoming process and the vast library of new bioactive molecules kind of venom can offer. This review aims to analyze which components of the venom have already been characterized towards its structure and biological effect and highlight the pharmacological and biotechnological potential of this venom. Although snake venoms have been studied for their toxic effects for generations, innovative studies address their components as tools for discovering new therapeutic targets and new molecules with pharmacological and biotechnological potential.

10.
Toxins (Basel) ; 13(12)2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34941689

RESUMEN

Among the vast repertoire of animal toxins and venoms selected by nature and evolution, mankind opted to devote its scientific attention-during the last century-to a restricted group of animals, leaving a myriad of toxic creatures aside. There are several underlying and justifiable reasons for this, which include dealing with the public health problems caused by envenoming by such animals. However, these studies became saturated and gave rise to a whole group of animals that become neglected regarding their venoms and secretions. This repertoire of unexplored toxins and venoms bears biotechnological potential, including the development of new technologies, therapeutic agents and diagnostic tools and must, therefore, be assessed. In this review, we will approach such topics through an interconnected historical and scientific perspective that will bring up the major discoveries and innovations in toxinology, achieved by researchers from the Butantan Institute and others, and describe some of the major research outcomes from the study of these neglected animals.


Asunto(s)
Desarrollo de Medicamentos , Toxinas Biológicas/toxicidad , Ponzoñas/toxicidad , Animales , Humanos
11.
Cells ; 10(10)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34685596

RESUMEN

Cancer is one of the most important health problems and the second leading cause of death worldwide. Despite the advances in oncology, cancer heterogeneity remains challenging to therapeutics. This is because the exosome-mediated crosstalk between cancer and non-cancer cells within the tumor microenvironment (TME) contributes to the acquisition of all hallmarks of cancer and leads to the formation of cancer stem cells (CSCs), which exhibit resistance to a range of anticancer drugs. Thus, this review aims to summarize the role of TME-derived exosomes in cancer biology and explore the clinical potential of mesenchymal stem-cell-derived exosomes as a cancer treatment, discussing future prospects of cell-free therapy for cancer treatment and challenges to be overcome.


Asunto(s)
Resistencia a Antineoplásicos , Exosomas/fisiología , Neoplasias , Microambiente Tumoral , Antineoplásicos/uso terapéutico , Transición Epitelial-Mesenquimal , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Células Madre Neoplásicas
12.
Biomed Res Int ; 2021: 8855248, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33748281

RESUMEN

Neurodegenerative diseases are one of the major causes of death worldwide, characterized by neurite atrophy, neuron apoptosis, and synapse loss. No effective treatment has been indicated for such diseases so far, and the search for new drugs is being increased in the last years. Animal venoms' secretion/venom can be an alternative for the discovery of new molecules, which could be the prototype for a new treatment. Here, we present the biochemical characterization and activity of the extract from the box jellyfish Chiropsalmus quadrumanus (Cq) on neurites. The Cq methanolic extract was obtained and incubated to human SH-SY5Y neurons, and neurite parameters were evaluated. The extract was tested in other cell types to check its cytotoxicity and was submitted to biochemical analysis by mass spectrometry in order to check its composition. We could verify that the Cq extract increased neurite outgrowth length and branching junctions, amplifying the contact between SH-SY5Y neurons, without affecting cell body and viability. The extract action was selective for neurons, as it did not cause any effects on other cell types, such as tumor line, nontumor line, and red blood cells. Moreover, mass spectrometry analysis revealed that there are no proteins but several low molecular mass compounds and peptides. Three peptides, characterized as cryptides, and 14 low molecular mass compounds were found to be related to cytoskeleton reorganization, cell membrane expansion, and antioxidant/neuroprotective activity, which act together to increase neuritogenesis. After this evaluation, we conclude that the Cq extract is a promising tool for neuronal connection recovery, an essential condition for the treatment of neurodegenerative diseases.


Asunto(s)
Mezclas Complejas/farmacología , Cubomedusas/química , Neuritas/metabolismo , Fármacos Neuroprotectores/farmacología , Animales , Línea Celular Tumoral , Mezclas Complejas/química , Humanos , Fármacos Neuroprotectores/química
13.
Toxins (Basel) ; 13(7)2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34208941

RESUMEN

Osteoclasts (OCs) are important for bone maintenance, calcium balance, and tissue regeneration regulation and are involved in different inflammatory diseases. Our study aimed to evaluate the effect of Bothrops moojeni's venom and its low and high molecular mass (HMM and LMM) fractions on human peripheral blood mononuclear cell (PBMC)-derived OCs' in vitro differentiation. Bothrops moojeni, a Brazilian lanced-head viper, presents a rich but not well-explored, venom composition. This venom is a potent inducer of inflammation, which can be used as a tool to investigate the inflammatory process. Human PBMCs were isolated and induced to OC differentiation following routine protocol. On the fourth day of differentiation, the venom was added at different concentrations (5, 0.5, and 0.05 µg/mL). We observed a significant reduction of TRAP+ (tartrate-resistant acid phosphatase) OCs at the concentration of 5 µg/mL. We evaluated the F-actin-rich OCs structure's integrity; disruption of its integrity reflects bone adsorption capacity. F-actin rings phalloidin staining demonstrated that venom provoked their disruption in treated OCs. HMM, fraction reduces TRAP+ OCs at a concentration of 5 µg/mL and LMM fraction at 1 µg/mL, respectively. Our results indicate morphological changes that the venom induced cause in OCs. We analyzed the pattern of soluble proteins found in the conditioned cell culture medium OCs treated with venom and its fractions using mass spectrometry (LC-MS/IT-Tof). The proteomic analyses indicate the possible pathways and molecular mechanisms involved in OC reduction after the treatment.


Asunto(s)
Venenos de Crotálidos/toxicidad , Osteoclastos/efectos de los fármacos , Adulto , Animales , Bothrops , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Masculino , Osteoclastos/citología , Osteoclastos/metabolismo , Proteoma/efectos de los fármacos
14.
Braz J Microbiol ; 52(4): 2475-2482, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34562234

RESUMEN

Bufotenine, an alkaloid that can be found in plant extracts and skin secretions of amphibians, is reported to have potential antiviral activity. The present study evaluated the antiviral activity of bufotenine against different genetic lineages of rabies virus (RABV, a single-stranded, negative-sense RNA virus), canine coronavirus (CCoV, a positive-sense RNA virus) and two double-stranded DNA viruses (two strains of herpes simplex virus type 1/HSV-1 [KOS and the acyclovir-resistant HSV-1 strain 29R] and canine adenovirus 2, CAV-2). The maximal non-toxic bufotenine concentrations in Vero and BHK-21 cells were determined by MTT assays. The antiviral activity of bufotenine against each virus was assessed by examination of reductions in infectious virus titres and plaque assays. All experiments were performed with and without bufotenine, and the results were compared. Bufotenine demonstrated significant RABV inhibitory activity. No antiviral action was observed against CCoV, CAV-2 or HSV-1. These findings indicate that the antiviral activity of bufotenine is somewhat linked to the particular infectious dose used and the genetic lineage of the virus, although the mechanisms of its effects remain undetermined.


Asunto(s)
Antivirales , Bufotenina , Virus ADN/efectos de los fármacos , Virus ARN/efectos de los fármacos , Animales , Antivirales/farmacología , Bufotenina/farmacología , Chlorocebus aethiops , Cricetinae , Células Vero
15.
Cells ; 9(12)2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322404

RESUMEN

The aging population has contributed to the rapid rise in the global incidence of neurodegenerative diseases. Despite the medical advances, there are no effective treatments for these disorders. Therefore, there is an urgent need for new treatments for these diseases. In this sense, cell therapy has been recognized as the best candidate for treating incurable diseases, such as neurodegenerative disorders. However, the therapeutic use of these cells can be limited by several factors. Thus, there has been a rediscovery that extracellular vesicles, including exosomes, can be alternatively explored in the treatment of these diseases, overcoming the limits of cell-based therapy. In this sense, this review aims to revisit all areas from biology, including biogenesis and the content of exosomes, to biotechnology, proposing the minimal information required to isolate, characterize, and study the content of these vesicles for scientific and/or clinical purposes.


Asunto(s)
Exosomas/metabolismo , Enfermedades Neurodegenerativas/terapia , Biotecnología , Medios de Cultivo Condicionados/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Exosomas/trasplante , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Metaloproteasas/metabolismo , Enfermedades Neurodegenerativas/patología , Ácidos Nucleicos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-32071597

RESUMEN

BACKGROUND: Between 40,000-70,000 people die yearly of rabies, an incurable disease. Besides post-bite vaccination, no treatment is available for it. METHODS: First, virus dilution for antiviral effects in mice was determined. Then, animals were treated as follows: control (NaCl 250 µL/animal/day); bufotenine (0.63, 1.05 and 2.1 mg in 250 µL of NaCl/animal/day); rabies (10-6,82CVS dilution); and test (10-6,82 CVS dilution and bufotenine, in the above-mentioned doses). Animals were observed daily for 21 days or until the 3rd stage of rabies infection. Twitch-tension and liposome studies were applied to understand the possible interaction of bufotenine with receptors, particularly acetylcholine. RESULTS: Bufotenine was able to increase the survival rate of intracerebrally virus-infected mice from 15 to 40%. Bufotenine did not seem to interfere with the acetylcholine response in the skeletal muscle, indicating that its mechanism of action is not blocking the virus entrance due to nAChR antagonism. By analyzing liposomes, we could observe that bufotenine did not passively penetrates cell membranes, indicating the necessity of complementary structures to cell penetration. CONCLUSIONS: Bufotenine is a promising candidate for drug development. After further chemical modification, it might be possible to dissociate minor side effects, increase efficiency, efficacy and pharmacokinetics, yielding a true anti-rabies drug.

17.
Sci Rep ; 10(1): 17434, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060654

RESUMEN

Many studies have linked the antimicrobial properties of kefir with the presence of bacteriocins and organic acids. In the present work, results obtained from bacteriostatic and bactericidal studies, and from RP-HPLC, Mass Spectrometry and proton NMR analysis, show that a sample of milk kefir grains is able to produce an antimicrobial fraction, denoted FK-1000, composed of sugars and amino acids, predominantly polymers of alanine, doublets of tyrosine and phenylalanine. Since this fraction is a lyophilized product whose molecular profile is different from bacteriocins and simple carboxylic acids, its antimicrobial effect cannot be attributed to these molecules, or to alcohols or hydrogen peroxide. The fraction is bactericidal against weak-acid-resistant MRSA and weak-acid resistant P. aeruginosa at pH 5, and is bacteriostatic against both pathogens at pH 7. In combination formulation, the FK-1000 fraction is able to increase fivefold the effect of streptomycin against P. aeruginosa and it is not toxic to human epithelial cells at antimicrobial concentrations. 16 S rRNA microbiota analysis of antimicrobial-producing and non-producing kefir grains demonstrated that they are distinct. In summary, the results indicate that milk kefir grains can produce different classes of molecules with potent antibiotic activity against resistant bacteria.


Asunto(s)
Antibacterianos/farmacología , Kéfir , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Humanos , Kéfir/microbiología , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Microbiota
18.
Toxicon ; 152: 78-83, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-30071220

RESUMEN

Loxosceles venom is a potential source of bioactive molecules which may be transformed into antimicrobial products against multi-resistant bacteria. Here, it was investigated whether Loxosceles gaucho spider had any influence on the proliferation, enzyme release and biofilm formation of a Pseudomonas aeruginosa strain resistant to two different classes of antibiotic. The results demonstrated that L. gaucho whole venom has no influence on P. aeruginosa proliferation. However, it increases P. aeruginosa production of gelatinase, caseinase and biofilm formation. The same effects were noted when P. aeruginosa was exposed to a L. gaucho venom molecular fraction with mass lower than 1 kDa. Separation of this molecular fraction into different subsets by RP-HPLC demonstrated that, among the molecules with the ability to increase the production of enzymes and biofilm formation, there are some with antimicrobial activities whose effects are not observed in the whole venom. In summary, the results obtained herein indicate that L. gaucho venom has a variety of low molecular mass bioactive components that influence the mechanisms of virulence of P. aeruginosa in different ways.


Asunto(s)
Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Venenos de Araña/química , Venenos de Araña/farmacología , Virulencia/efectos de los fármacos , Animales , Biopelículas/efectos de los fármacos , Gelatinasas/metabolismo , Metaloendopeptidasas/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/crecimiento & desarrollo , Arañas
19.
Biomed Res Int ; 2018: 1032638, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29955598

RESUMEN

Bufotenine is an alkaloid derived from serotonin, structurally similar to LSD and psilocin. This molecule is able to inhibit the rabies virus infection in in vitro and in vivo models, increasing the survival rate of infected animals. Being a very promising molecule for an incurable disease and because of the fact that there is no consensus regarding its neurological effects, this study aimed to evaluate chronic treatment of bufotenine on behavior, pathophysiology, and pharmacokinetics of mice. Animals were daily treated for 21 consecutive days with 0.63, 1.05, and 2.1 mg/animal/day bufotenine and evaluated by open field test and physiological parameters during all the experiment. After this period, organs were collected for histopathological and biodistribution analysis. Animals treated with bufotenine had mild behavioral alterations compared to the control group, being dose-response relationship. On the other hand, animals showed normal physiological functions and no histological alterations in the organs. With high doses, an inflammatory reaction was observed in the site of injection, but with no cellular damage. The alkaloid could be found in the heart and kidney with all doses and in the lungs and brain with higher doses. These results show that the effective dose, 0.63 mg/day, is safe to be administered in mice, since it did not cause significant effects on the animals' physiology and on the CNS. Higher doses were well tolerated, causing only mild behavioral effects. Thus, bufotenine might be a drug prototype for rabies treatment, an incurable disease.


Asunto(s)
Bufotenina/farmacocinética , Antagonistas de la Serotonina/farmacocinética , Animales , Femenino , Masculino , Ratones , Serotonina , Distribución Tisular
20.
Artículo en Inglés | MEDLINE | ID: mdl-26635873

RESUMEN

BACKGROUND: Rabies is an incurable neglected zoonosis with worldwide distribution characterized as a lethal progressive acute encephalitis caused by a lyssavirus. Animal venoms and secretions have long been studied as new bioactive molecular sources, presenting a wide spectrum of biological effects, including new antiviral agents. Bufotenine, for instance, is an alkaloid isolated from the skin secretion of the anuran Rhinella jimi that inhibits cellular penetration by the rabies virus. Antimicrobial peptides, such as ocellatin-P1 and ocellatin-F1, are present in the skin secretion of anurans from the genus Leptodactylus and provide chemical defense against predators and microorganisms. METHODS: Skin secretion from captive Leptodactylus labyrinthicus was collected by mechanical stimulation, analyzed by liquid chromatography and mass spectrometry, and assayed for antiviral and cytotoxic activities. Synthetic peptides were obtained using solid phase peptide synthesis, purified by liquid chromatography and structurally characterized by mass spectrometry, and assayed in the same models. Cytotoxicity assays based on changes in cellular morphology were performed using baby hamster kidney (BHK-21) cells. Fixed Rabies virus (Pasteur Virus - PV) strain was used for virological assays based on rapid fluorescent focus inhibition test. RESULTS: Herein, we describe a synergic effect between ocellatin-F1 and bufotenine. This synergism was observed when screening the L. labyrinthicus skin secretion for antiviral activities. The active fraction major component was the antimicrobial peptide ocellatin-F1. Nevertheless, when the pure synthetic peptide was assayed, little antiviral activity was detectable. In-depth analyses of the active fraction revealed the presence of residual alkaloids together with ocellatin-F1. By adding sub-effective doses (e.g. < IC50) of pure bufotenine to synthetic ocellatin-F1, the antiviral effect was regained. Moreover, a tetrapetide derived from ocellatin-F1, based on alignment with the virus's glycoprotein region inferred as a possible cell ligand, was able to maintain the synergic antiviral activity displayed by the full peptide. CONCLUSIONS: This novel antiviral synergic effect between a peptide and an alkaloid may present an innovative lead for the study of new antiviral drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA