Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Comput Aided Mol Des ; 18(3): 175-87, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15368918

RESUMEN

The role of intramolecular motions in ligand-macromolecule interactions has been explored by developing and validating ALPHA, a novel QSAR (quantitative structure-activity relationship) descriptor. It is based on the spectral exponents (alpha), which measure the degree of 1/f alpha noise of coordinate fluctuations in molecular dynamics (MD) simulations. ALPHA is the first truly 'dynamic' QSAR descriptor, i.e., it can be derived directly from an MD trajectory. The performance of ALPHA was tested in detail employing the CBG (corticosteroid binding globulin) affinity of 31 benchmark steroids, supplemented with 11 steroids as an external test set. The only fair (42-50%) correlations of ALPHA with static 3D and electronic descriptors mean that ALPHA forms an independent molecular property. Furthermore, inclusion of ALPHA in the SOMFA/ESP model improves the correlation coefficient from 0.86 to 0.91, and /delta/ave from 0.46 to 0.36 for the benchmark dataset. The predictive ability of ALPHA can be interpreted as indirect evidence of the dynamic contribution to ligand-macromolecule interactions. The physical background of ALPHA is discussed and the importance of molecular motions for biological activity is anticipated.


Asunto(s)
Proteínas/química , Esteroides/química , Esteroides/farmacología , Ligandos , Relación Estructura-Actividad Cuantitativa
2.
J Chem Inf Comput Sci ; 42(3): 607-13, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12086522

RESUMEN

A novel electronic eigenvalue (EEVA) descriptor of molecular structure for use in the derivation of predictive QSAR/QSPR models is described. Like other spectroscopic QSAR/QSPR descriptors, EEVA is also invariant as to the alignment of the structures concerned. Its performance was tested with respect to the CBG (corticosteroid binding globulin) affinity of 31 benchmark steroids. It appeared that the electronic structure of the steroids, i.e., the "spectra" derived from molecular orbital energies, is directly related to the CBG binding affinities. The predictive ability of EEVA is compared to other QSAR approaches, and its performance is discussed in the context of the Hammett equation. The good performance of EEVA is an indication of the essential quantum mechanical nature of QSAR. The EEVA method is a supplement to conventional 3D QSAR methods, which employ fields or surface properties derived from Coulombic and van der Waals interactions.


Asunto(s)
Esteroides/química , Relación Estructura-Actividad Cuantitativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA