Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32220838

RESUMEN

The structure and function of fungal communities in the coffee rhizosphere are influenced by crop environment. Because coffee can be grown along a management continuum from conventional application of pesticides and fertilizers in full sun to organic management in a shaded understory, we used coffee fields to hold host constant while comparing rhizosphere fungal communities under markedly different environmental conditions with regard to shade and inputs. We characterized the shade and soil environment in 25 fields under conventional, organic, or transitional management in two regions of Costa Rica. We amplified the internal transcribed spacer 2 (ITS2) region of fungal DNA from coffee roots in these fields and characterized the rhizosphere fungal community via high-throughput sequencing. Sequences were assigned to guilds to determine differences in functional diversity and trophic structure among coffee field environments. Organic fields had more shade, a greater richness of shade tree species, and more leaf litter and were less acidic, with lower soil nitrate availability and higher soil copper, calcium, and magnesium availability than conventionally managed fields, although differences between organic and conventionally managed fields in shade and calcium and magnesium availability depended on region. Differences in richness and community composition of rhizosphere fungi between organic and conventionally managed fields were also correlated with shade, soil acidity, and nitrate and copper availability. Trophic structure differed with coffee field management. Saprotrophs, plant pathogens, and mycoparasites were more diverse, and plant pathogens were more abundant, in organic than in conventionally managed fields, while saprotroph-plant pathogens were more abundant in conventionally managed fields. These differences reflected environmental differences and depended on region.IMPORTANCE Rhizosphere fungi play key roles in ecosystems as nutrient cyclers, pathogens, and mutualists, yet little is currently known about which environmental factors and how agricultural management may influence rhizosphere fungal communities and their functional diversity. This field study of the coffee agroecosystem suggests that organic management not only fosters a greater overall diversity of fungi, but it also maintains a greater richness of saprotrophic, plant-pathogenic, and mycoparasitic fungi that has implications for the efficiency of nutrient cycling and regulation of plant pathogen populations in agricultural systems. As well as influencing community composition and richness of rhizosphere fungi, shade management and use of fungicides and synthetic fertilizers altered the trophic structure of the coffee agroecosystem.


Asunto(s)
Coffea/microbiología , Hongos/aislamiento & purificación , Micobioma , Agricultura Orgánica , Raíces de Plantas/microbiología , Rizosfera , Costa Rica , Hongos/clasificación , Hongos/fisiología
2.
Mycorrhiza ; 30(4): 513-527, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32500441

RESUMEN

The composition of arbuscular mycorrhizal fungal (AMF) communities should reflect not only responses to host and soil environments, but also differences in functional roles and costs vs. benefits among arbuscular mycorrhizal fungi. The coffee agroecosystem allows exploration of the effects of both light and soil fertility on AMF communities, because of the variation in shade and soil nutrients farmers generate through field management. We used high-throughput ITS2 sequencing to characterize the AMF communities of coffee roots in 25 fields in Costa Rica that ranged from organic management with high shade and no chemical fertilizers to conventionally managed fields with minimal shade and high N fertilization, and examined relationships between AMF communities and soil and shade parameters with partial correlations, NMDS, PERMANOVA, and partial least squares analysis. Gigasporaceae and Acaulosporaceae dominated coffee AMF communities in terms of relative abundance and richness, respectively. Gigasporaceae richness was greatest in conventionally managed fields, while Glomeraceae richness was greatest in organic fields. While total AMF richness and root colonization did not differ between organic and conventionally managed fields, AMF community composition did; these differences were correlated with soil nitrate and shade. OTUs differing in relative abundance between conventionally managed and organic fields segregated into four groups: Gigasporaceae associated with high light and nitrate availability, Acaulosporaceae with high light and low nitrate availability, Acaulosporaceae and a single relative of Rhizophagus fasciculatus with shade and low nitrate availability, and Claroideoglomus/Glomus with conventionally managed fields but uncorrelated with shade and soil variables. The association of closely related taxa with similar shade and light availabilities is consistent with phylogenetic trait conservatism in AM fungi.


Asunto(s)
Micobioma , Micorrizas , Café , Costa Rica , Nitrógeno , Filogenia , Raíces de Plantas , Suelo , Microbiología del Suelo
3.
Front Nutr ; 8: 735366, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35059423

RESUMEN

Phenylketonuria (PKU) is a metabolic disorder caused by a hepatic enzyme deficiency causing high blood and brain levels of the amino acid Phenylalanine (Phe), leading to severe cognitive and psychological deficits that can be prevented, but not completely, by dietary treatment. The behavioral outcome of PKU could be affected by the gut-microbiome-brain axis, as diet is one of the major drivers of the gut microbiome composition. Gut-microbiome alterations have been reported in treated patients with PKU, although the question remains whether this is due to PKU, the dietary treatment, or their interaction. We, therefore, examined the effects of dietary Phe restriction on gut-microbiome composition and relationships with behavioral outcome in mice. Male and female BTBR Pahenu2 mice received either a control diet (normal protein, "high" Phe), liberalized Phe-restricted (33% natural protein restriction), or severe Phe-restricted (75% natural protein restriction) diet with protein substitutes for 10 weeks (n = 14 per group). Their behavioral performance was examined in an open field test, novel and spatial object location tests, and a balance beam. Fecal samples were collected and sequenced for the bacterial 16S ribosomal RNA (rRNA) region. Results indicated that PKU on a high Phe diet reduced Shannon diversity significantly and altered the microbiome composition compared with wild-type animals. Phe-restriction prevented this loss in Shannon diversity but changed community composition even more than the high-Phe diet, depending on the severity of the restriction. Moreover, on a taxonomic level, we observed the highest number of differentially abundant genera in animals that received 75% Phe-restriction. Based on correlation analyses with differentially abundant taxa, the families Entereococacceae, Erysipelotrichaceae, Porphyromonadaceae, and the genus Alloprevotella showed interesting relationships with either plasma Phe levels and/or object memory. According to our results, these bacterial taxa could be good candidates to start examining the microbial metabolic potential and probiotic properties in the context of PKU. We conclude that PKU leads to an altered gut microbiome composition in mice, which is least severe on a liberalized Phe-restricted diet. This may suggest that the current Phe-restricted diet for PKU patients could be optimized by taking dietary effects on the microbiome into account.

4.
Sci Total Environ ; 738: 140164, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32806343

RESUMEN

Machair is a vulnerable low-lying coastal ecosystem with internationally recognised conservation importance. It is characterised by wind-blown calcareous shell-sand soils that support a patchwork of low-input land-use types including species rich grasslands and small-scale arable production. In contrast to numerous above-ground studies, few below-ground studies have been made on the Machair. Thus, a knowledge gap exists, and no baseline data is available to determine the impact, if any, of fundamental changes in Machair land management practices such as a move from traditional rotational to permanent grazing, and increased use of inorganic fertiliser. To address this knowledge deficit, we assessed the impact of different agronomic management practices (cropped, fallow and grasslands) on the structure of soil nematode communities over a two-year period along a geographically limited north-south gradient of coastal Machair of the Outer Hebrides archipelago. Land use followed by season were the main drivers of nematode communities from Machair soils. Functionally, nematode communities from grassland were typically distinct from cropped or fallow communities driven primarily by differential contributions to the overall nematode community by the dominant bacterial-feeding nematodes. Temporally, nematode communities sampled in spring and autumn were distinct.


Asunto(s)
Ecosistema , Nematodos , Animales , Bacterias , Estaciones del Año , Suelo
5.
J Microbiol Methods ; 169: 105799, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31790780

RESUMEN

Uropathogenic Escherichia coli (UPEC) is the most common causal agent of urinary tract infections (UTIs) in humans. Currently, clinical detection methods take hours (dipsticks) to days (culturing methods), limiting rapid intervention. As an alternative, the use of molecular methods could improve speed and accuracy, but their applicability is complicated by high genomic variability within UPEC strains. Here, we describe a novel PCR-based method for the identification of E. coli in urine. Based on in silico screening of UPEC genomes, we selected three UPEC-specific genes predicted to be involved in pathogenesis (c3509, c3686 (yrbH) and chuA), and one E. coli-specific marker gene (uidA). We validated the method on 128 clinical (UTI) strains. Despite differential occurrences of these genes in uropathogenic E. coli, the method, when using multi-gene combinations, specifically detected the target organism across all samples. The lower detection limit, assessed with model UPEC strains, was approximately 104 CFU/ml. Additionally, the use of this method in a novel ultrafast PCR thermal cycler (Nextgen PCR) allowed a detection time from urine sampling to identification of only 52 min. This is the first study that uses such defined sets of marker genes for the detection of E. coli in UTIs. In addition, we are the first to demonstrate the potential of the Nextgen thermal cycler. Our E. coli identification method has the potential to be a rapid, reliable and inexpensive alternative for traditional methods.


Asunto(s)
Infecciones por Escherichia coli/diagnóstico , Reacción en Cadena de la Polimerasa/métodos , Infecciones Urinarias/diagnóstico , Escherichia coli Uropatógena/genética , Isomerasas Aldosa-Cetosa/genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Genoma Bacteriano/genética , Glucuronidasa/genética , Humanos , Límite de Detección , Receptores de Superficie Celular/genética , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/aislamiento & purificación , Escherichia coli Uropatógena/patogenicidad , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA