Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38712049

RESUMEN

Mild hyperthermia (MHTh) is often used in combination with chemotherapy and radiotherapy for cancer treatment. In the current study, the effect of MHTh on the enhanced uptake of the FDA-approved chemotherapy drug, liposomal doxorubicin (dox) in syngeneic 4T1 tumors was investigated. Doxorubicin has inherent fluorescence properties having an emission signal at 590 nm upon excitation with a 480 nm laser. A group of mice administered with doxorubicin (dox) were exposed to MHTh (42 °C) for 30 minutes whereas control group given dox did not receive MHTh. Ex vivo optical imaging of harvested tumors confirmed higher uptake of dox in treated versus the control untreated tumors. Confocal microscopy of tumor sections indicates higher fluorescent intensity due to increased accumulation of dox in MHTh-treated compared to untreated tumors. We examined the effect of MHTh to enhance CD8 tumor infiltration, production of interferon-γ (IFN-γ) and expression of programmed death ligand-1 (PD-L1). mRNA in situ hybridization was performed to test for transcripts of CD8, IFN-γ and PD-L1. Results showed that higher expression of CD8 mRNA was observed in MHTh-administered tumors versus untreated cohorts. The signal for IFN-γ and PD-L1 in both groups were not significantly different. Taken together, our findings imply that MHTh can improve tumor uptake of dox. Importantly, our data suggests that MHTh can boost CD8+ T cell infiltration.

2.
Front Oncol ; 13: 1285117, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130991

RESUMEN

Introduction: We previously developed a 89Zr-labeled antibody-based immuno-positron emission tomography (immunoPET) tracer targeting interferon gamma (IFNγ), a cytokine produced predominantly by activated T and natural killer (NK) cells during pathogen clearance, anti-tumor immunity, and various inflammatory and autoimmune conditions. The current study investigated [89Zr]Zr-DFO-anti-IFNγ PET as a method to monitor response to immune checkpoint inhibitors (ICIs). Methods: BALB/c mice bearing CT26 colorectal tumors were treated with combined ICI (anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and anti-programmed death 1 (PD-1)). The [89Zr]Zr-DFO-anti-IFNγ PET tracer, generated with antibody clone AN18, was administered on the day of the second ICI treatment, with PET imaging 72 hours later. Tumor mRNA was analyzed by quantitative reverse-transcribed PCR (qRT-PCR). Results: We detected significantly higher intratumoral localization of [89Zr]Zr-DFO-anti-IFNγ in ICI-treated mice compared to untreated controls, while uptake of an isotype control tracer remained similar between treated and untreated mice. Interestingly, [89Zr]Zr-DFO-anti-IFNγ uptake was also elevated relative to the isotype control in untreated mice, suggesting that the IFNγ-specific tracer might be able to detect underlying immune activity in situ in this immunogenic model. In an efficacy experiment, a significant inverse correlation between tracer uptake and tumor burden was also observed. Because antibodies to cytokines often exhibit neutralizing effects which might alter cellular communication within the tumor microenvironment, we also evaluated the impact of AN18 on downstream IFNγ signaling and ICI outcomes. Tumor transcript analysis using interferon regulatory factor 1 (IRF1) expression as a readout of IFNγ signaling suggested there may be a marginal disruption of this pathway. However, compared to a 250 µg dose known to neutralize IFNγ, which diminished ICI efficacy, a tracer-equivalent 50 µg dose did not reduce ICI response rates. Discussion: These results support the use of IFNγ PET as a method to monitor immune activity in situ after ICI, which may also extend to additional T cell-activating immunotherapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA