Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Microbiol ; 21(10): 3653-3668, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31125479

RESUMEN

A majority of environmental studies describe microbiomes at coarse scales of taxonomic resolution (bacterial community, phylum), ignoring key ecological knowledge gained from finer-scales and microbial indicator taxa. Here, we characterized the distribution of 940 bacterial taxa from 41 streams along an urbanization gradient (0%-83% developed watershed area) in the Raleigh-Durham area of North Carolina (USA). Using statistical approaches derived from macro-organismal ecology, we found that more bacterial taxa were classified as intolerant than as tolerant to increasing watershed urbanization (143 vs 48 OTUs), and we identified a threshold of 12.1% developed watershed area beyond which the majority of intolerant taxa were lost from streams. Two bacterial families strongly decreased with urbanization: Acidobacteriaceae (Acidobacteria) and Xanthobacteraceae (Alphaproteobacteria). Tolerant taxa were broadly distributed throughout the bacterial phylogeny, with members of the Comamonadaceae family (Betaproteobacteria) presenting the highest number of tolerant taxa. Shifts in microbial community structure were strongly correlated with a stream biotic index, based on macroinvertebrate composition, suggesting that microbial assemblages could be used to establish biotic criteria for monitoring aquatic ecosystems. In addition, our study shows that classic methods in community ecology can be applied to microbiome datasets to identify reliable microbial indicator taxa and determine the environmental constraints on individual taxa distributions along environmental gradients.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Ríos/microbiología , Urbanización , Microbiología del Agua , Ecosistema , Monitoreo del Ambiente , North Carolina
2.
Ecol Appl ; 21(6): 1932-49, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21939035

RESUMEN

Streams, as low-lying points in the landscape, are strongly influenced by the stormwaters, pollutants, and warming that characterize catchment urbanization. River restoration projects are an increasingly popular method for mitigating urban insults. Despite the growing frequency and high expense of urban stream restoration projects, very few projects have been evaluated to determine whether they can successfully enhance habitat structure or support the stream biota characteristic of reference sites. We compared the physical and biological structure of four urban degraded, four urban restored, and four forested streams in the Piedmont region of North Carolina to quantify the ability of reach-scale stream restoration to restore physical and biological structure to urban streams and to examine the assumption that providing habitat is sufficient for biological recovery. To be successful at mitigating urban impacts, the habitat structure and biological communities found in restored streams should be more similar to forested reference sites than to their urban degraded counterparts. For every measured reach- and patch-scale attribute, we found that restored streams were indistinguishable from their degraded urban stream counterparts. Forested streams were shallower, had greater habitat complexity and median sediment size, and contained less-tolerant communities with higher sensitive taxa richness than streams in either urban category. Because heavy machinery is used to regrade and reconfigure restored channels, restored streams had less canopy cover than either forested or urban streams. Channel habitat complexity and watershed impervious surface cover (ISC) were the best predictors of sensitive taxa richness and biotic index at the reach and catchment scale, respectively. Macroinvertebrate communities in restored channels were compositionally similar to the communities in urban degraded channels, and both were dissimilar to communities in forested streams. The macroinvertebrate communities of both restored and urban degraded streams were correlated with environmental variables characteristic of degraded urban systems. Our study suggests that reach-scale restoration is not successfully mitigating for the factors causing physical and biological degradation.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Restauración y Remediación Ambiental/métodos , Ríos , Remodelación Urbana , Contaminación del Agua , Animales , Invertebrados , North Carolina
3.
Artículo en Inglés | MEDLINE | ID: mdl-31890082

RESUMEN

Graphing allows for the succinct communication of scientific data and is therefore a critical learning objective in science curricula. Unfortunately, many students, particularly non-science majors, lack the necessary skills to prepare and interpret graphs. Many students are able to interpolate data and observe general trends but demonstrate only a cursory ability to contextualize their results. In this paper, we suggest an introductory module and graphing lessons to improve the quantitative skills of non-science majors. In each of these lessons, students go through four phases of data analysis: (a) collection; (b) graphing; (c) interpolation/trend detection (reading), and (d) determining the underlying mechanism resulting in the trends they observe (interpretation). By employing these activities, we are continuing to improve the scientific literacy of students.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA