RESUMEN
Aluminum oxide (Al2O3) nanopowder is spin-coated onto both sides of commercial polypropene separator to create artificial solid-electrolyte interphase (SEI) and artificial cathode electrolyte interface (CEI) in potassium metal batteries (KMBs). This significantly enhances the stability, including of KMBs with Prussian Blue (PB) cathodes. For example, symmetric cells are stable after 1,000 cycles at 0.5â mA/cm2-0.5â mAh/cm2 and 3.0â mA/cm2-0.5â mAh/cm2. Alumina modified separators promote electrolyte wetting and increase ionic conductivity (0.59 vs. 0.2â mS/cm) and transference number (0.81 vs. 0.23). Cryo-stage focused ion beam (cryo-FIB) analysis of cycled modified anode demonstrates dense and planar electrodeposits, versus unmodified baseline consisting of metal filaments (dendrites) interspersed with pores and SEI. Alumina-modified CEI also suppresses elemental Fe crossover and reduces cathode cracking. Mesoscale modeling of metal - SEI interactions captures crucial role of intrinsic heterogeneities, illustrating how artificial SEI affects reaction current distribution, conductivity and morphological stability.
RESUMEN
This study examines how current collector support chemistry (sodiophilic intermetallic Na2Te vs. sodiophobic baseline Cu) and electrodeposition rate affect microstructure of sodium metal and its solid electrolyte interphase (SEI). Capacity and current (6 mAh cm-2, 0.5-3 mA cm-2) representative of commercially relevant mass loading in anode-free sodium metal battery (AF-SMBs) are analyzed. Synchrotron X-ray nanotomography and grazing-incidence wide-angle X-ray scattering (GIWAXS) are combined with cryogenic focused ion beam (cryo-FIB) microscopy. Highlighted are major differences in film morphology, internal porosity, and crystallographic preferred orientation e.g. (110) vs. (100) and (211) with support and deposition rate. Within the SEI, sodium fluoride (NaF) is more prevalent with Te-Cu versus sodium hydride (NaH) and sodium hydroxide (NaOH) with baseline Cu. Due to competitive grain growth the preferred orientation of sodium crystallites depends on film thickness. Mesoscale modelling delineates the role of SEI (ionic conductivity, morphology) on electrodeposit growth and onset of electrochemical instability.
RESUMEN
Combined synchrotron X-ray nanotomography imaging, cryogenic electron microscopy (cryo-EM) and modeling elucidate how potassium (K) metal-support energetics influence electrodeposit microstructure. Three model supports are employed: O-functionalized carbon cloth (potassiophilic, fully-wetted), non-functionalized cloth and Cu foil (potassiophobic, nonwetted). Nanotomography and focused ion beam (cryo-FIB) cross-sections yield complementary three-dimensional (3D) maps of cycled electrodeposits. Electrodeposit on potassiophobic support is a triphasic sponge, with fibrous dendrites covered by solid electrolyte interphase (SEI) and interspersed with nanopores (sub-10â nm to 100â nm scale). Lage cracks and voids are also a key feature. On potassiophilic support, the deposit is dense and pore-free, with uniform surface and SEI morphology. Mesoscale modeling captures the critical role of substrate-metal interaction on K metal film nucleation and growth, as well as the associated stress state.
RESUMEN
Despite progress in solid-state battery engineering, our understanding of the chemo-mechanical phenomena that govern electrochemical behaviour and stability at solid-solid interfaces remains limited compared to at solid-liquid interfaces. Here, we use operando synchrotron X-ray computed microtomography to investigate the evolution of lithium/solid-state electrolyte interfaces during battery cycling, revealing how the complex interplay among void formation, interphase growth and volumetric changes determines cell behaviour. Void formation during lithium stripping is directly visualized in symmetric cells, and the loss of contact that drives current constriction at the interface between lithium and the solid-state electrolyte (Li10SnP2S12) is quantified and found to be the primary cause of cell failure. The interphase is found to be redox-active upon charge, and global volume changes occur owing to partial molar volume mismatches at either electrode. These results provide insight into how chemo-mechanical phenomena can affect cell performance, thus facilitating the development of solid-state batteries.
RESUMEN
The solid electrolyte interphase (SEI) plays a pivotal role in enabling fast ionic transport and preserving the battery electrodes from parasitic reactions with solvents. However, due to large volume changes of lithium (Li) electrodes, the SEI layer can potentially undergo mechanical failure, resulting in electrolyte degradation. The mechanical stability of the SEI is a critical aspect that needs to be modulated for designing rechargeable metal batteries with optimal performance. In this work, we perform density functional theory calculations to investigate the mechanical properties of lithium fluoride (LiF) and lithium oxide (Li2O) nanofilms and quantify the Li surface diffusion kinetics over these two SEI materials. Based on our analysis, it is identified that Young's modulus and the ideal strength of the SEI are strong functions of the nanofilm thickness and crystallographic direction. Interestingly, we find that mechanical strain substantially alters the Li surface diffusion behavior on the SEI. For a strain of 4%, while the Li surface diffusion rate decreases by two orders of magnitude on the stretched Li2O film, it increases two times on the stretched LiF film, indicating critical implications on the morphological stability of the metal anode. A fundamental correlation between inherent SEI properties and Li plating behavior is revealed, suggesting a potential pathway to achieve dendrite-free electrodeposition via SEI modulation.
RESUMEN
Metal anode-based battery systems have been deemed indispensable towards energy storage renaissance engendering extensive research into strategies countering dendritic growth of metal electrodeposition. Fundamentally, the morphological evolution of a material is uniquely characterized by the heights of its self-diffusion barrier across multiple pathways. Herein, based on a coarse-grained kinetic Monte Carlo method, we derive insights into the nucleation and growth of metallic electrodeposits in liquid electrolytes, governed by surface self-diffusion characteristics cognizant of the diverse diffusion routes including terrace, away from step and interlayer pathways. We deconvolve the roles played by each of these surface diffusion mechanisms in conjunction with the electrochemical reaction rate on the deposition morphology regime (film vs. mossy vs. fractal). We identify interlayer diffusion as the predominant morphology-determining mechanism; dendrite-free deposition even at moderate current rates constrains this diffusion barrier to an upper limit. Additionally, we highlight subtle features amidst the realm of the morphological growth assortment that connect to the cell's electrochemical performance. Finally, we delineate morphological features of Li, Na, Mg and Al based on their respective surface diffusion barriers and applied overpotentials, and provide a baseline for the interpretation of experimental observations. This fundamental study sheds light on the mesoscale underpinnings of morphological variances in mono-valent and multi-valent metal electrodeposition.
RESUMEN
As solid-state batteries (SSBs) with lithium (Li) metal anodes gain increasing traction as promising next-generation energy storage systems, a fundamental understanding of coupled electro-chemo-mechanical interactions is essential to design stable solid-solid interfaces. Notably, uneven electrodeposition at the Li metal/solid electrolyte (SE) interface arising from intrinsic electrochemical and mechanical heterogeneities remains a significant challenge. In this work, the thermodynamic origins of mechanics-coupled reaction kinetics at the Li/SE interface are investigated and its implications on electrodeposition stability are unveiled. It is established that the mechanics-driven energetic contribution to the free energy landscape of the Li deposition/dissolution redox reaction has a critical influence on the interface stability. The study presents the competing effects of mechanical and electrical overpotential on the reaction distribution, and demarcates the regimes under which stress interactions can be tailored to enable stable electrodeposition. It is revealed that different degrees of mechanics contribution to the forward (dissolution) and backward (deposition) reaction rates result in widely varying stability regimes, and the mechanics-coupled kinetics scenario exhibited by the Li/SE interface is shown to depend strongly on the thermodynamic and mechanical properties of the SE. This work highlights the importance of discerning the underpinning nature of electro-chemo-mechanical coupling toward achieving stable solid/solid interfaces in SSBs.
RESUMEN
Sodium (Na) metal batteries have attracted recent attention due to their low cost and high abundance of Na. However, the advancement of Na metal batteries is impeded due to key challenges such as dendrite growth, solid electrolyte interphase (SEI) fracture, and low Coulombic efficiency. This study examines the coupled electro-chemo-mechanical interactions governing the electrodeposition stability and morphological evolution at the Na/electrolyte interface. The SEI heterogeneities influence transport and reaction kinetics leading to the formation of current and stress hotspots during Na plating. Further, it is demonstrated that the heterogeneity-induced Na metal evolution and its influence on the stress distribution critically affect the mechanical overpotential, contributing to a faster SEI failure. The analysis reveals three distinct failure mechanisms-mechanical, transport, and kinetic-that govern the onset of instabilities at the interface. Finally, a comprehensive comparative study of SEI failure in Na and lithium (Li) metal anodes illustrates that the electrochemical and mechanical characteristics of the SEI are crucial in tailoring the anode morphology and interface stability. This work delineates mechanistic stability regimes cognizant of the SEI attributes and underlying failure modes and offers important guidelines for the design of artificial SEI layers for stable Na metal electrodes.
RESUMEN
This work delineates the thermal safety of full-scale sodium-ion batteries (SIBs) by interrogating the material-level electrochemical and thermal responses of micro and nano-structured tin (Sn) based anodes and sodium vanadium phosphate (NVP) cathodes in suitable electrolyte systems. Informed by these material-level signatures, we delineate cell-level thermal safety maps cognizant of underlying electrode-electrolyte interactions in SIBs.
RESUMEN
Solid-state batteries with Li metal anodes can offer increased energy density compared to Li-ion batteries. However, the performance of pure Li anodes has been limited by morphological instabilities at the interface between Li and the solid-state electrolyte (SSE). Composites of Li metal with other materials such as carbon and Li alloys have exhibited improved cycling stability, but the mechanisms associated with this enhanced performance are not clear, especially at the low stack pressures needed for practical viability. Here, we investigate the structural evolution and correlated electrochemical behavior of Li metal composites containing reduced graphene oxide (rGO) and Li-Ag alloy particles. The nanoscale carbon scaffold maintains homogeneous contact with the SSE during stripping and facilitates Li transport to the interface; these effects largely prevent interfacial disconnection even at low stack pressure. The Li-Ag is needed to ensure cyclic refilling of the rGO scaffold with Li during plating, and the solid-solution character of Li-Ag improves cycling stability compared to other materials that form intermetallic compounds. Full cells with sulfur cathodes were tested at relatively low stack pressure, achieving 100 stable cycles with 79% capacity retention.
RESUMEN
A stable anode-free all-solid-state battery (AF-ASSB) with sulfide-based solid-electrolyte (SE) (argyrodite Li6 PS5 Cl) is achieved by tuning wetting of lithium metal on "empty" copper current-collector. Lithiophilic 1 µm Li2 Te is synthesized by exposing the collector to tellurium vapor, followed by in situ Li activation during the first charge. The Li2 Te significantly reduces the electrodeposition/electrodissolution overpotentials and improves Coulombic efficiency (CE). During continuous electrodeposition experiments using half-cells (1 mA cm-2 ), the accumulated thickness of electrodeposited Li on Li2 Te-Cu is more than 70 µm, which is the thickness of the Li foil counter-electrode. Full AF-ASSB with NMC811 cathode delivers an initial CE of 83% at 0.2C, with a cycling CE above 99%. Cryogenic focused ion beam (Cryo-FIB) sectioning demonstrates uniform electrodeposited metal microstructure, with no signs of voids or dendrites at the collector-SE interface. Electrodissolution is uniform and complete, with Li2 Te remaining structurally stable and adherent. By contrast, an unmodified Cu current-collector promotes inhomogeneous Li electrodeposition/electrodissolution, electrochemically inactive "dead metal," dendrites that extend into SE, and thick non-uniform solid electrolyte interphase (SEI) interspersed with pores. Density functional theory (DFT) and mesoscale calculations provide complementary insight regarding nucleation-growth behavior. Unlike conventional liquid-electrolyte metal batteries, the role of current collector/support lithiophilicity has not been explored for emerging AF-ASSBs.
RESUMEN
Solid-state batteries (SSBs) hold the potential to enhance the energy density, power density, and safety of conventional lithium-ion batteries. The theoretical promise of SSBs is predicated on the mechanistic design and comprehensive analysis of various solid-solid interfaces and microstructural features within the system. The spatial arrangement and composition of constituent phases (e.g., active material, solid electrolyte, binder) in the solid-state cathode dictate critical characteristics such as solid-solid point contacts or singularities within the microstructure and percolation pathways for ionic/electronic transport. In this work, we present a comprehensive mesoscale discourse to interrogate the underlying microstructure-coupled kinetic-transport interplay and concomitant modes of resistances that evolve during electrochemical operation of SSBs. Based on a hierarchical physics-based analysis, the mechanistic implications of solid-solid point contact distribution and intrinsic transport pathways on the kinetic heterogeneity is established. Toward designing high-energy-density SSB systems, the fundamental correlation between active material loading, electrode thickness and electrochemical response has been delineated. We examine the paradigm of carbon-binder free cathodes and identify design criteria that can facilitate enhanced performance with such electrode configurations. A mechanistic design map highlighting the dichotomy in kinetic and ionic/electronic transport limitations that manifest at various SSB cathode microstructural regimes is established.