Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Curr Issues Mol Biol ; 45(10): 7944-7955, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37886945

RESUMEN

Following viral infection, T-cells are crucial for an effective immune response to intracellular pathogens, including respiratory viruses. During the COVID-19 pandemic, diverse assays were required in pre-clinical trials to evaluate the immune response following vaccination against SARS-CoV-2 and assess the response following exposure to the virus. To assess the nature and potency of the cellular response to infection or vaccination, a reliable and specific activity assay was needed. A cellular activity assay based on the presentation of short peptides (epitopes) allows the identification of T cell epitopes displayed on different alleles of the MHC, shedding light on the strength of the immune response towards antigens and aiding in antigen design for vaccination. In this report, we describe two approaches for scanning T cell epitopes on the surface glycoprotein of the SARS-CoV-2 (spike), which is utilized for attachment and entry and serves as an antigen in many vaccine candidates. We demonstrate that epitope scanning is feasible using peptide libraries or computational scanning combined with a cellular activity assay. Our scans identified four CD8 T cell epitopes, including one novel undescribed epitope. These epitopes enabled us to establish a reliable T-cell response assay, which was examined and used in various experimental mouse models for SARS-CoV-2 infection and vaccination. These approaches could potentially aid in future antigen design for vaccination and establish cellular activity assays against uncharacterized antigens of emerging pathogens.

2.
PLoS Pathog ; 17(12): e1010175, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34929007

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Currently, as dangerous mutations emerge, there is an increased demand for specific treatments for SARS-CoV-2 infected patients. The spike glycoprotein on the virus envelope binds to the angiotensin converting enzyme 2 (ACE2) on host cells through its receptor binding domain (RBD) to mediate virus entry. Thus, blocking this interaction may inhibit viral entry and consequently stop infection. Here, we generated fusion proteins composed of the extracellular portions of ACE2 and RBD fused to the Fc portion of human IgG1 (ACE2-Ig and RBD-Ig, respectively). We demonstrate that ACE2-Ig is enzymatically active and that it can be recognized by the SARS-CoV-2 RBD, independently of its enzymatic activity. We further show that RBD-Ig efficiently inhibits in-vivo SARS-CoV-2 infection better than ACE2-Ig. Mechanistically, we show that anti-spike antibody generation, ACE2 enzymatic activity, and ACE2 surface expression were not affected by RBD-Ig. Finally, we show that RBD-Ig is more efficient than ACE2-Ig at neutralizing high virus titers. We thus propose that RBD-Ig physically blocks virus infection by binding to ACE2 and that RBD-Ig should be used for the treatment of SARS-CoV-2-infected patients.


Asunto(s)
Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/metabolismo , Dominios Proteicos , Proteínas Recombinantes de Fusión/metabolismo , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Sitios de Unión , Sitios de Unión de Anticuerpos , COVID-19/prevención & control , Chlorocebus aethiops , Femenino , Células HEK293 , Humanos , Fragmentos Fc de Inmunoglobulinas/uso terapéutico , Inmunoglobulina G/uso terapéutico , Ratones Transgénicos , Pruebas de Neutralización , Unión Proteica , Proteínas Recombinantes de Fusión/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Células Vero
3.
J Biol Chem ; 296: 100470, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33639165

RESUMEN

The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major threat to global health. Vaccines are ideal solutions to prevent infection, but treatments are also needed for those who have contracted the virus to limit negative outcomes, when vaccines are not applicable. Viruses must cross host cell membranes during their life cycle, creating a dependency on processes involving membrane dynamics. Thus, in this study, we examined whether the synthetic machinery for glycosphingolipids, biologically active components of cell membranes, can serve as a therapeutic target to combat SARS-CoV-2. We examined the antiviral effect of two specific inhibitors of glucosylceramide synthase (GCS): (i) Genz-123346, an analogue of the United States Food and Drug Administration-approved drug Cerdelga and (ii) GENZ-667161, an analogue of venglustat, which is currently under phase III clinical trials. We found that both GCS inhibitors inhibit replication of SARS-CoV-2. Moreover, these inhibitors also disrupt replication of influenza virus A/PR/8/34 (H1N1). Our data imply that synthesis of glycosphingolipids is necessary to support viral life cycles and suggest that GCS inhibitors should be further explored as antiviral therapies.


Asunto(s)
Antivirales/farmacología , Carbamatos/farmacología , Dioxanos/farmacología , Glucosiltransferasas/antagonistas & inhibidores , Glicoesfingolípidos/antagonistas & inhibidores , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Pirrolidinas/farmacología , Quinuclidinas/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/síntesis química , COVID-19/enzimología , COVID-19/virología , Carbamatos/síntesis química , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Membrana Celular/virología , Chlorocebus aethiops , Ensayos Clínicos Fase III como Asunto , Dioxanos/síntesis química , Perros , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glicoesfingolípidos/biosíntesis , Interacciones Huésped-Patógeno/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Gripe Humana/tratamiento farmacológico , Gripe Humana/enzimología , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Pirrolidinas/síntesis química , Quinuclidinas/síntesis química , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/metabolismo , Transducción de Señal , Células Vero , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
4.
Arch Toxicol ; 96(8): 2329-2339, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35577986

RESUMEN

BriLife®, a vector-based vaccine that utilizes the recombinant vesicular stomatitis virus (VSV) platform to express and present the spike antigen of SARS-CoV-2, is undergoing testing in a phase 2 clinical trial in Israel. A nonclinical repeated-dose (GLP) toxicity study in New Zealand white rabbits was performed to evaluate the potential toxicity, local tolerance, immunogenicity and biodistribution of the vaccine. rVSV-ΔG-SARS-CoV-2-S (or vehicle) was administered intramuscularly to two groups of animals (106, 107 PFU/animal, n = 10/sex/group) on three occasions, at 2-week intervals, followed by a 3-week recovery period. Systemic clinical signs, local reactions, body weight, body temperature, food consumption, ophthalmology, urinalysis, clinical pathology, C-reactive protein, viremia and antibody levels were monitored. Gross pathology was performed, followed by organs/tissues collection for biodistribution and histopathological evaluation. Treatment-related changes were restricted to multifocal minimal myofiber necrosis at the injection sites, and increased lymphocytic cellularity in the iliac and mesenteric lymph nodes and in the spleen. These changes were considered related to the inflammatory reaction elicited, and correlated with a trend for recovery. Detection of rVSV-ΔG-SARS-CoV-2-S vaccine RNA was noted in the regional iliac lymph node in animals assigned to the high-dose group, at both termination time points. A significant increase in binding and neutralizing antibody titers was observed following vaccination at both vaccine doses. In view of the findings, it was concluded that the rVSV-ΔG-SARS-CoV-2-S vaccine is safe. These results supported the initiation of clinical trials.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Conejos , SARS-CoV-2 , Distribución Tisular
5.
J Am Soc Nephrol ; 32(9): 2242-2254, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34112705

RESUMEN

BACKGROUND: Although coronavirus disease 2019 (COVID-19) causes significan t morbidity, mainly from pulmonary involvement, extrapulmonary symptoms are also major componen ts of the disease. Kidney disease, usually presenting as AKI, is particularly severe among patients with COVID-19. It is unknown, however, whether such injury results from direct kidney infection with COVID-19's causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or from indirect mechanisms. METHODS: Using ex vivo cell models, we sought to analyze SARS-CoV-2 interactions with kidney tubular cells and assess direct tubular injury. These models comprised primary human kidney epithelial cells (derived from nephrectomies) and grown as either proliferating monolayers or quiescent three-dimensional kidney spheroids. RESULTS: We demonstrated that viral entry molecules and high baseline levels of type 1 IFN-related molecules were present in monolayers and kidney spheroids. Although both models support viral infection and replication, they did not exhibit a cytopathic effect and cell death, outcomes that were strongly present in SARS-CoV-2-infected controls (African green monkey kidney clone E6 [Vero E6] cultures). A comparison of monolayer and spheroid cultures demonstrated higher infectivity and replication of SARS-CoV-2 in actively proliferating monolayers, although the spheroid cultures exhibited high er levels of ACE2. Monolayers exhibited elevation of some tubular injury molecules-including molecules related to fibrosis (COL1A1 and STAT6) and dedifferentiation (SNAI2)-and a loss of cell identity, evident by reduction in megalin (LRP2). The three-dimensional spheroids were less prone to such injury. CONCLUSIONS: SARS-CoV-2 can infect kidney cells without a cytopathic effect. AKI-induced cellular proliferation may potentially intensify infectivity and tubular damage by SARS-CoV-2, suggesting that early intervention in AKI is warranted to help minimize kidney infection.


Asunto(s)
Lesión Renal Aguda/etiología , Lesión Renal Aguda/virología , COVID-19/complicaciones , SARS-CoV-2/patogenicidad , Esferoides Celulares/virología , Animales , Células Cultivadas , Chlorocebus aethiops , Estudios de Cohortes , Efecto Citopatogénico Viral , Células Epiteliales/patología , Células Epiteliales/virología , Interacciones Microbiota-Huesped , Humanos , Interferón Tipo I/metabolismo , Riñón/inmunología , Riñón/patología , Riñón/virología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Modelos Biológicos , Pandemias , Receptores Virales/metabolismo , Estudios Retrospectivos , SARS-CoV-2/fisiología , Esferoides Celulares/patología , Células Vero , Replicación Viral
6.
J Neurochem ; 156(5): 692-701, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32743826

RESUMEN

Most lysosomal storage diseases (LSDs) have a significant neurological component, including types 2 and 3 Gaucher disease (neuronal forms of Gaucher disease; nGD). No therapies are currently available for nGD since the recombinant enzymes used in the systemic form of Gaucher disease do not cross the blood-brain barrier (BBB). However, a number of promising approaches are currently being tested, including substrate reduction therapy (SRT), in which partial inhibition of the synthesis of the glycosphingolipids (GSLs) that accumulate in nGD lowers their accumulation. We now induce nGD in mice by injection with conduritol B-epoxide (CBE), an irreversible inhibitor of acid beta-glucosidase (GCase), the enzyme defective in nGD, with or without co-injection with Genz-667161, a prototype for SRT which crosses the BBB. Significant neuropathology, and a reduction in lifespan, was observed upon CBE injection, and this was largely reversed by co-injection with Genz-667161, along with a reduction in glucosylceramide and glucosylsphingosine levels. Analysis of gene expression by RNAseq revealed that Genz-667161 largely reversed the changes in genes and pathways that were differentially expressed upon CBE injection, specifically pathways of GSL metabolism, lipoproteins and other lipid metabolic pathways, lipid droplets, astrocyte activation, neuronal function, and to some extent, neuroinflammation. Together, this demonstrates the efficacy of SRT to reverse the effects of substrate accumulation on pathological components and pathways in nGD brain.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Gaucher/metabolismo , Enfermedad de Gaucher/patología , Glucosilceramidasa/antagonistas & inhibidores , Glicoesfingolípidos/antagonistas & inhibidores , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Enfermedad de Gaucher/tratamiento farmacológico , Glucosilceramidasa/metabolismo , Glicoesfingolípidos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/fisiología
7.
J Clin Microbiol ; 56(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29386263

RESUMEN

Multiplexed detection technologies are becoming increasingly important given the possibility of bioterrorism attacks, for which the range of suspected pathogens can vary considerably. In this work, we describe the use of Luminex MagPlex magnetic microspheres for the construction of two multiplexed diagnostic suspension arrays, enabling antibody-based detection of bacterial pathogens and their related disease biomarkers directly from blood cultures. The first 4-plex diagnostic array enabled the detection of both anthrax and plague infections using soluble disease biomarkers, including protective antigen (PA) and anthrax capsular antigen for anthrax detection and the capsular F1 and LcrV antigens for plague detection. The limits of detection (LODs) ranged between 0.5 and 5 ng/ml for the different antigens. The second 2-plex diagnostic array facilitated the detection of Yersinia pestis (LOD of 1 × 106 CFU/ml) and Francisella tularensis (LOD of 1 × 104 CFU/ml) from blood cultures. Inoculated, propagated blood cultures were processed (15 to 20 min) via 2 possible methodologies (Vacutainer or a simple centrifugation step), allowing the direct detection of bacteria in each sample, and the entire assay could be performed in 90 min. While detection of bacteria and soluble markers from blood cultures using PCR Luminex suspension arrays has been widely described, to our knowledge, this study is the first to demonstrate the utility of the Luminex system for the immunodetection of both bacteria and soluble markers directly from blood cultures. Targeting both the bacterial pathogens as well as two different disease biomarkers for each infection, we demonstrated the benefit of the multiplexed developed assays for enhanced, reliable detection. The presented arrays could easily be expanded to include antibodies for the detection of other pathogens of interest in hospitals or labs, demonstrating the applicability of this technology for the accurate detection and confirmation of a wide range of potential select agents.


Asunto(s)
Carbunco/diagnóstico , Cultivo de Sangre/métodos , Peste/diagnóstico , Análisis por Matrices de Proteínas/métodos , Tularemia/diagnóstico , Carbunco/sangre , Carbunco/inmunología , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/sangre , Bacillus anthracis/genética , Bacillus anthracis/inmunología , Bacillus anthracis/aislamiento & purificación , Biomarcadores/sangre , Bioterrorismo , Francisella tularensis/genética , Francisella tularensis/inmunología , Francisella tularensis/aislamiento & purificación , Humanos , Imanes , Microesferas , Peste/sangre , Peste/inmunología , Reacción en Cadena de la Polimerasa , Análisis por Matrices de Proteínas/instrumentación , Sensibilidad y Especificidad , Tularemia/sangre , Tularemia/inmunología , Yersinia pestis/genética , Yersinia pestis/inmunología , Yersinia pestis/aislamiento & purificación
8.
J Pathol ; 239(4): 496-509, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27234572

RESUMEN

Great interest has been shown in understanding the pathology of Gaucher disease (GD) due to the recently discovered genetic relationship with Parkinson's disease. For such studies, suitable animal models of GD are required. Chemical induction of GD by inhibition of acid ß-glucosidase (GCase) using the irreversible inhibitor conduritol B-epoxide (CBE) is particularly attractive, although few systematic studies examining the effect of CBE on the development of symptoms associated with neurological forms of GD have been performed. We now demonstrate a correlation between the amount of CBE injected into mice and levels of accumulation of the GD substrates, glucosylceramide and glucosylsphingosine, and show that disease pathology, indicated by altered levels of pathological markers, depends on both the levels of accumulated lipids and the time at which their accumulation begins. Gene array analysis shows a remarkable similarity in the gene expression profiles of CBE-treated mice and a genetic GD mouse model, the Gba(flox/flox) ;nestin-Cre mouse, with 120 of the 144 genes up-regulated in CBE-treated mice also up-regulated in Gba(flox/flox) ;nestin-Cre mice. We also demonstrate that various aspects of neuropathology and some behavioural abnormalities can be arrested upon cessation of CBE treatment during a specific time window. Together, our data demonstrate that injection of mice with CBE provides a rapid and relatively easy way to induce symptoms typical of neuronal forms of GD. This is particularly useful when examining the role of specific biochemical pathways in GD pathology, since CBE can be injected into mice defective in components of putative pathological pathways, alleviating the need for time-consuming crossing of mice. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Enfermedad de Gaucher/patología , Animales , Modelos Animales de Enfermedad , Enfermedad de Gaucher/inducido químicamente , Enfermedad de Gaucher/genética , Perfilación de la Expresión Génica , Inositol/análogos & derivados , Ratones
9.
Hum Mol Genet ; 23(4): 843-54, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24064337

RESUMEN

Gaucher disease has recently received wide attention due to the unexpected discovery that it is a genetic risk factor for Parkinson's disease. Gaucher disease is caused by the defective activity of the lysosomal enzyme, glucocerebrosidase (GCase; GBA1), resulting in intracellular accumulation of the glycosphingolipids, glucosylceramide and psychosine. The rare neuronopathic forms of GD (nGD) are characterized by profound neurological impairment and neuronal cell death. We have previously described the progression of neuropathological changes in a mouse model of nGD. We now examine the relationship between glycosphingolipid accumulation and initiation of pathology at two pre-symptomatic stages of the disease in four different brain areas which display differential degrees of susceptibility to GCase deficiency. Liquid chromatography electrospray ionization tandem mass spectrometry demonstrated glucosylceramide and psychosine accumulation in nGD brains prior to the appearance of neuroinflammation, although only glucosylceramide accumulation correlated with neuroinflammation and neuron loss. Levels of other sphingolipids, including the pro-apoptotic lipid, ceramide, were mostly unaltered. Transmission electron microscopy revealed that glucosylceramide accumulation occurs in neurons, mostly in the form of membrane-delimited pseudo-tubules located near the nucleus. Highly disrupted glucosylceramide-storing cells, which are likely degenerating neurons containing massive inclusions, numerous autophagosomes and unique ultrastructural features, were also observed. Together, our results indicate that a certain level of neuronal glucosylceramide storage is required to trigger neuropathological changes in affected brain areas, while other brain areas containing similar glucosylceramide levels are unaltered, presumably because of intrinsic differences in neuronal properties, or in the neuronal environment, between various brain regions.


Asunto(s)
Enfermedad de Gaucher/metabolismo , Glucosilceramidas/metabolismo , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Enfermedad de Gaucher/patología , Glucosilceramidasa/deficiencia , Glucosilceramidasa/genética , Humanos , Lactosilceramidos/metabolismo , Ratones , Ratones Noqueados , Neuronas/patología , Psicosina/metabolismo , Esfingomielinas/metabolismo
10.
J Neuroinflammation ; 13(1): 104, 2016 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-27175482

RESUMEN

BACKGROUND: Neuroinflammation is a key phenomenon in the pathogenesis of many neurodegenerative diseases. Understanding the mechanisms by which brain inflammation is engaged and delineating the key players in the immune response and their contribution to brain pathology is of great importance for the identification of novel therapeutic targets for these devastating diseases. Gaucher disease, the most common lysosomal storage disease, is caused by mutations in the GBA1 gene and is a significant risk factor for Parkinson's disease; in some forms of Gaucher disease, neuroinflammation is observed. METHODS: An unbiased gene profile analysis was performed on a severely affected brain area of a neurological form of a Gaucher disease mouse at a pre-symptomatic stage; the mouse used for this study, the Gba (flox/flox); nestin-Cre mouse, was engineered such that GBA1 deficiency is restricted to cells of neuronal lineage, i.e., neurons and macroglia. RESULTS: The 10 most up-regulated genes in the ventral posteromedial/posterolateral region of the thalamus were inflammatory genes, with the gene expression signature significantly enriched in interferon signaling genes. Interferon ß levels were elevated in neurons, and interferon-stimulated genes were elevated mainly in microglia. Interferon signaling pathways were elevated to a small extent in the brain of another lysosomal storage disease mouse model, Krabbe disease, but not in Niemann-Pick C or Sandhoff mouse brain. Ablation of the type I interferon receptor attenuated neuroinflammation but had no effect on GD mouse viability. CONCLUSIONS: Our results imply that the type I interferon response is involved in the development of nGD pathology, and possibly in other lysosomal storage diseases in which simple glycosphingolipids accumulate, and support the notion that interferon signaling pathways play a vital role in the sterile inflammation that often occurs during chronic neurodegenerative diseases in which neuroinflammation is present.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Enfermedad de Gaucher , Interferón Tipo I/metabolismo , Neuronas/metabolismo , Regulación hacia Arriba/genética , Animales , Receptor 1 de Quimiocinas CX3C , Encefalitis/etiología , Encefalitis/metabolismo , Encefalitis/patología , Enfermedad de Gaucher/complicaciones , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Perfilación de la Expresión Génica , Glucosilceramidasa/deficiencia , Glucosilceramidasa/genética , Glicoesfingolípidos/metabolismo , Humanos , Recién Nacido , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Nestina/genética , Nestina/metabolismo , Neuronas/patología , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/genética , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Transducción de Señal/genética
11.
Biol Chem ; 396(6-7): 659-67, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25720063

RESUMEN

Lysosomal storage diseases (LSDs) are mainly caused by the defective activity of lysosomal hydrolases. A sub-class of LSDs are the sphingolipidoses, in which sphingolipids accumulate intra-cellularly. We here discuss the role of innate immunity in the sphingolipidoses, and compare the pathways of activation in two classical sphingolipidoses, namely Gaucher disease and Sandhoff disease, and in Niemann-Pick C disease, in which the main storage material is cholesterol but sphingolipids also accumulate. We discuss the mechanisms leading to neuroinflammation, and the different pathways of neuroinflammation in the different diseases, and suggest that intervention in these pathways may be a useful therapeutic approach to address these devastating human diseases.


Asunto(s)
Encéfalo/inmunología , Inmunidad Innata/inmunología , Enfermedades por Almacenamiento Lisosomal/inmunología , Esfingolipidosis/inmunología , Animales , Enfermedad de Gaucher/inmunología , Humanos , Enfermedad de Niemann-Pick Tipo C/inmunología
12.
Adv Mater ; : e2309860, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615189

RESUMEN

Artificial antigen-presenting cells (aAPCs) are currently used to manufacture T cells for adoptive therapy in cancer treatment, but a readily tunable and modular system can enable both rapid T cell expansion and control over T cell phenotype. Here, it is shown that microgels with tailored surface biochemical properties can serve as aAPCs to mediate T cell activation and expansion. Surface functionalization of microgels is achieved via layer-by-layer coating using oppositely charged polymers, forming a thin but dense polymer layer on the surface. This facile and versatile approach is compatible with a variety of coating polymers and allows efficient and flexible surface-specific conjugation of defined peptides or proteins. The authors demonstrate that tethering appropriate stimulatory ligands on the microgel surface efficiently activates T cells for polyclonal and antigen-specific expansion. The expansion, phenotype, and functional outcome of primary mouse and human T cells can be regulated by modulating the concentration, ratio, and distribution of stimulatory ligands presented on microgel surfaces as well as the stiffness and viscoelasticity of the microgels.

13.
Hum Mol Genet ; 20(7): 1375-86, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21252206

RESUMEN

Gaucher disease (GD), the most common lysosomal storage disorder, is caused by a deficiency in the lysosomal enzyme glucocerebrosidase (GlcCerase), which results in intracellular accumulation of glucosylceramide (GlcCer). The rare neuronopathic forms of GD are characterized by profound neurological impairment and neuronal cell death, but little is known about the neuropathological changes that underlie these events. We now systematically examine the onset and progression of various neuropathological changes (including microglial activation, astrogliosis and neuron loss) in a mouse model of neuronopathic GD, and document the brain areas that are first affected, which may reflect vulnerability of these areas to GlcCerase deficiency. We also identify neuropathological changes in several brain areas and pathways, such as the substantia nigra reticulata, reticulotegmental nucleus of the pons, cochlear nucleus and the somatosensory system, which could be responsible for some of the neurological manifestations of the human disease. In addition, we establish that microglial activation and astrogliosis are spatially and temporally correlated with selective neuron loss.


Asunto(s)
Encéfalo/patología , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Enfermedad de Gaucher/patología , Enfermedad de Gaucher/fisiopatología , Inflamación/fisiopatología , Neuronas/patología , Animales , Encéfalo/enzimología , Muerte Celular , Enfermedad de Gaucher/enzimología , Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Humanos , Inflamación/enzimología , Inflamación/genética , Inflamación/patología , Ratones , Ratones Mutantes , Neuronas/enzimología
14.
Brain ; 135(Pt 6): 1724-35, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22566609

RESUMEN

Gaucher's disease, the most common lysosomal storage disorder, is caused by the defective activity of glucocerebrosidase, the lysosomal hydrolase that degrades glucosylceramide. The neuronopathic forms of Gaucher's disease are characterized by severe neuronal loss, astrocytosis and microglial proliferation, but the cellular and molecular pathways causing these changes are not known. In the current study, we delineate the role of neuroinflammation in the pathogenesis of neuronopathic Gaucher's disease and show significant changes in levels of inflammatory mediators in the brain of a neuronopathic Gaucher's disease mouse model. Levels of messenger RNA expression of interleukin -1ß, tumour necrosis factor-α, tumour necrosis factor-α receptor, macrophage colony-stimulating factor and transforming growth factor-ß were elevated by up to ∼30-fold, with the time-course of the increase correlating with the progression of disease severity. The most significant elevation was detected for the chemokines CCL2, CCL3 and CCL5. Blood-brain barrier disruption was also evident in mice with neuronopathic Gaucher's disease. Finally, extensive elevation of nitrotyrosine, a hallmark of peroxynitrite (ONOO(-)) formation, was observed, consistent with oxidative damage caused by macrophage/microglia activation. Together, our results suggest a cytotoxic role for activated microglia in neuronopathic Gaucher's disease. We suggest that once a critical threshold of glucosylceramide storage is reached in neurons, a signalling cascade is triggered that activates microglia, which in turn releases inflammatory cytokines that amplify the inflammatory response, contributing to neuronal death.


Asunto(s)
Encefalitis/etiología , Enfermedad de Gaucher/complicaciones , Neuronas/patología , Animales , Animales Recién Nacidos , Antiinflamatorios no Esteroideos/uso terapéutico , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Barrera Hematoencefálica/fisiopatología , Proteínas de Unión al Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Encefalitis/diagnóstico , Encefalitis/tratamiento farmacológico , Encefalitis/patología , Células Endoteliales/patología , Ensayo de Inmunoadsorción Enzimática/métodos , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/genética , Regulación del Desarrollo de la Expresión Génica/genética , Glucosilceramidasa/deficiencia , Ibuprofeno/uso terapéutico , Inmunoglobulina G/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Proteínas de Filamentos Intermediarios/genética , Imagen por Resonancia Magnética , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Microglía/patología , Proteínas del Tejido Nervioso/genética , Nestina , Neuronas/efectos de los fármacos , TATA Box , Tirosina/análogos & derivados , Tirosina/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
15.
Handb Exp Pharmacol ; (216): 405-19, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23563668

RESUMEN

Gaucher disease is an inherited metabolic disease caused by the defective activity of the lysosomal enzyme, glucosylceramidase (GlcCerase), which is responsible for the last step in the degradation of complex glycosphingolipids. As a result, glucosylceramide (GlcCer) accumulates intracellularly. Little is known about the mechanisms by which GlcCer accumulation leads to Gaucher disease, particularly for the types of the disease in which severe neuropathology occurs. We now summarize recent advances in this area and in particular focus in the biochemical and cellular pathways that may cause neuronal defects. Most recent work has taken advantage of newly available mouse models, which mimic to a large extent human disease progression. Finally, we discuss observations of a genetic link between Gaucher disease and Parkinson's disease and discuss how this link has stimulated research into the basic biology of the previously underappreciated glycosphingolipid, GlcCer.


Asunto(s)
Encéfalo/metabolismo , Enfermedad de Gaucher/metabolismo , Neuronas/metabolismo , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/patología , Enfermedad de Gaucher/terapia , Predisposición Genética a la Enfermedad , Glucosilceramidas/metabolismo , Humanos , Ratones , Neuronas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Transducción de Señal
16.
Brain Commun ; 5(3): fcad086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168733

RESUMEN

Virus-induced CNS diseases impose a considerable human health burden worldwide. For many viral CNS infections, neither antiviral drugs nor vaccines are available. In this study, we examined whether the synthesis of glycosphingolipids, major membrane lipid constituents, could be used to establish an antiviral therapeutic target. We found that neuroinvasive Sindbis virus altered the sphingolipid levels early after infection in vitro and increased the levels of gangliosides GA1 and GM1 in the sera of infected mice. The alteration in the sphingolipid levels appears to play a role in neuroinvasive Sindbis virus replication, as treating infected cells with UDP-glucose ceramide glucosyltransferase (UGCG) inhibitors reduced the replication rate. Moreover, the UGCG inhibitor GZ-161 increased the survival rates of Sindbis-infected mice, most likely by reducing the detrimental immune response activated by sphingolipids in the brains of Sindbis virus-infected mice. These findings suggest a role for glycosphingolipids in the host immune response against neuroinvasive Sindbis virus and suggest that UGCG inhibitors should be further examined as antiviral therapeutics for viral infections of the CNS.

17.
Hum Mol Genet ; 19(18): 3583-90, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20616152

RESUMEN

The neuronopathic forms of the human inherited metabolic disorder, Gaucher disease (GD), are characterized by severe neuronal loss, astrogliosis and microglial proliferation, but the cellular and molecular pathways causing these changes are not known. Recently, a mouse model of neuronopathic GD was generated in which glucocerebrosidase deficiency is limited to neural and glial progenitor cells. We now show significant changes in the levels and in the distribution of cathepsins in the brain of this mouse model. Cathepsin mRNA expression was significantly elevated by up to approximately 10-fold, with the time-course of the increase correlating with the progression of disease severity. Cathepsin activity and protein levels were also elevated. Significant changes in cathepsin D distribution in the brain were detected, with cathepsin D elevated in areas where neuronal loss, astrogliosis and microgliosis were observed, such as in layer V of the cerebral cortex, the lateral globus pallidus and in various nuclei in the thalamus, brain regions known to be affected in the disease. Cathepsin D elevation was greatest in microglia and also noticeable in astrocytes. The distribution of cathepsin D was altered in neurons in a manner consistent with its release from the lysosome to the cytosol. Remarkably, ibubrofen treatment significantly reduced cathepsin D mRNA levels in the cortex of Gaucher mice. Finally, cathepsin levels were also altered in mouse models of a number of other sphingolipidoses. Our findings suggest the involvement of cathepsins in the neuropathology of neuronal forms of GD and of other lysosomal storage diseases, and are consistent with a crucial role for reactive microglia in neuronal degeneration in these diseases.


Asunto(s)
Catepsinas/genética , Catepsinas/metabolismo , Enfermedad de Gaucher/metabolismo , Expresión Génica , Esfingolipidosis/genética , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Enfermedad de Gaucher/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Esfingolipidosis/metabolismo
18.
Life Sci Alliance ; 5(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34764206

RESUMEN

Understanding pathways that might impact coronavirus disease 2019 (COVID-19) manifestations and disease outcomes is necessary for better disease management and for therapeutic development. Here, we analyzed alterations in sphingolipid (SL) levels upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection induced elevation of SL levels in both cells and sera of infected mice. A significant increase in glycosphingolipid levels was induced early post SARS-CoV-2 infection, which was essential for viral replication. This elevation could be reversed by treatment with glucosylceramide synthase inhibitors. Levels of sphinganine, sphingosine, GA1, and GM3 were significantly increased in both cells and the murine model upon SARS-CoV-2 infection. The potential involvement of SLs in COVID-19 pathology is discussed.


Asunto(s)
COVID-19/metabolismo , Modelos Animales de Enfermedad , Esfingolípidos/metabolismo , Replicación Viral/fisiología , Animales , COVID-19/prevención & control , COVID-19/virología , Chlorocebus aethiops , Cromatografía Liquida/métodos , Dioxanos/farmacología , Gangliósidos/sangre , Gangliósidos/metabolismo , Glucosiltransferasas/antagonistas & inhibidores , Glucosiltransferasas/metabolismo , Humanos , Espectrometría de Masas/métodos , Ratones Transgénicos , Pirrolidinas/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Esfingolípidos/sangre , Esfingosina/análogos & derivados , Esfingosina/sangre , Esfingosina/metabolismo , Células Vero , Replicación Viral/efectos de los fármacos
19.
J Biol Chem ; 285(27): 20423-7, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20430897

RESUMEN

Lysosomal storage diseases (LSDs), of which about 50 are known, are caused by the defective activity of lysosomal proteins, resulting in accumulation of unmetabolized substrates. As a result, a variety of pathogenic cascades are activated such as altered calcium homeostasis, oxidative stress, inflammation, altered lipid trafficking, autophagy, endoplasmic reticulum stress, and autoimmune responses. Some of these pathways are common to many LSDs, whereas others are only altered in a subset of LSDs. We now review how these cascades impact upon LSD pathology and suggest how intervention in the pathways may lead to novel therapeutic approaches.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal/genética , Antígenos CD/metabolismo , Enfermedades Autoinmunes/epidemiología , Autofagia , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Radicales Libres/metabolismo , Gangliósido G(M2)/metabolismo , Gangliósido G(M3)/metabolismo , Enfermedad de Gaucher/metabolismo , Humanos , Lactosilceramidos/metabolismo , Enfermedades por Almacenamiento Lisosomal/complicaciones , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/patología , Lisosomas/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo
20.
Hum Mol Genet ; 18(8): 1482-8, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19193629

RESUMEN

Gaucher disease (GD), the most common lysosomal storage disorder (LSD), is caused by defects in the activity of the lysosomal enzyme, glucocerebrosidase, resulting in intracellular accumulation of glucosylceramide (GlcCer). Neuronopathic forms, which comprise only a small percent of GD patients, are characterized by neurological impairment and neuronal cell death. Little is known about the pathways leading from GlcCer accumulation to neuronal death or dysfunction but defective calcium homeostasis appears to be one of the pathways involved. Recently, endoplasmic reticulum stress together with activation of the unfolded protein response (UPR) has been suggested to play a key role in cell death in neuronopathic forms of GD, and moreover, the UPR was proposed to be a common mediator of apoptosis in LSDs (Wei et al. (2008) Hum. Mol. Genet. 17, 469-477). We now systematically examine whether the UPR is activated in neuronal forms of GD using a selection of neuronal disease models and a combination of western blotting and semi-quantitative and quantitative real-time polymerase chain reaction. We do not find any changes in either protein or mRNA levels of a number of typical UPR markers including BiP, CHOP, XBP1, Herp and GRP58, in either cultured Gaucher neurons or astrocytes, or in brain regions from mouse models, even at late symptomatic stages. We conclude that the proposition that the UPR is a common mediator for apoptosis in all neurodegenerative LSDs needs to be re-evaluated.


Asunto(s)
Enfermedad de Gaucher/metabolismo , Pliegue de Proteína , Animales , Apoptosis , Astrocitos/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Humanos , Ratones , Neuronas/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA