Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Phys Rev Lett ; 126(20): 207802, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34110209

RESUMEN

Melts of multiarm stars of 1,4-polybutadiene (dendrimer arborescent hybrids) with very high branching functionality (f) and small arm molar mass behave as jammed colloids and show distinct layers of segmental mobility. Three mobility layers were identified, comprising outer, intermediate, and near-core segments, all displaying a Vogel-Fulcher-Tammann temperature dependence. The respective glass temperatures increase as f^{1/2}. Our findings pave the way for further progress in this field by reconsidering previous theoretical treatments based on a single friction coefficient in hybrid nanoparticles such as densely grafted stars.

2.
Soft Matter ; 17(48): 10935-10945, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34811560

RESUMEN

We use the impact of drops on a small solid target as a tool to investigate the behavior of viscoelastic fluids under extreme deformation rates. We study two classes of transient networks: semidilute solutions of supramolecular polymers and suspensions of spherical oil droplets reversibly linked by polymers. The two types of samples display very similar linear viscoelastic properties, which can be described with a Maxwell fluid model, but contrasting nonlinear properties due to different network structures. Upon impact, the weakly viscoelastic samples exhibit a behavior qualitatively similar to that of Newtonian fluids: a smooth and regular sheet forms, expands, and then retracts. By contrast, for highly viscoelastic fluids, the thickness of the sheet is found to be very irregular, leading to instabilities and eventually to the formation of holes. We find that the rheological properties of the material rule the onset of instabilities. We first provide a simple image analysis of the expanding sheets to determine the onset of instabilities. We then demonstrate that the Deborah number related to the shortest relaxation time associated with the sample structure following a high shear is the relevant parameter that controls the heterogeneities in the thickness of the sheet, eventually leading to the formation of holes. When the sheet tears-up, data suggest by contrast that the opening dynamics depends also on the expansion rate of the sheet.

3.
J Chem Phys ; 155(3): 034901, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34293891

RESUMEN

We present a systematic investigation of the structure and dynamic properties of model soft-hard colloidal mixtures. Results of a coarse-grained theoretical model are contrasted with rheological data, where the soft and hard colloids are mimicked by large star polymers with high functionality as the soft component and smaller stars with ultrahigh functionality as the hard one. Previous work by us revealed the recovery of the ergodicity of glassy soft star solutions and subsequent arrested phase separation and re-entrant solid transition upon progressive addition of small hard depletants. Here, we use different components to show that a small variation in softness has a significant impact on the state diagram of such mixtures. In particular, we establish that rendering the soft component more penetrable and modifying the size ratio bring about a remarkable shift in both the phase separation region and the glass-melting line so that the region of restored ergodicity can be notably enhanced and extended to much higher star polymer concentrations than for pure systems. We further rationalize our findings by analyzing the features of the depletion interaction induced by the smaller component that result from the interplay between the size ratio and the softness of the large component. These results demonstrate the great sensitivity of the phase behavior of entropic mixtures to small changes in the molecular architecture of the soft stars and point to the importance of accounting for details of the internal microstructure of soft colloidal particles for tailoring the flow properties of soft composites.

4.
J Rheol (N Y N Y) ; 65(4): 695-711, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35250122

RESUMEN

We present a comprehensive experimental rheological dataset for purified entangled ring polystyrenes and their blends with linear chains in nonlinear shear and elongation. In particular, data for shear stress growth coefficient, steady-state shear viscosity, and first and second normal stress differences are obtained and discussed as functions of shear rate as well as molecular parameters (molar mass, blend composition and decreasing molar mass of linear component in blend). Over the extended parameter range investigated, rings do not exhibit clear transient undershoot in shear, in contrast to their linear counterparts and ring-linear blends. For the latter, the size of the undershoot and respective strain appear to increase with shear rate. Universal scaling of strain at overshoot and fractional overshoot (ratio of maximum to steady-state shear stress growth coefficient) indicates subtle differences in the shear-rate dependence between rings and linear polymers or their blends. The shear thinning behaviour of pure rings yields a slope nearly identical to predictions (-4/7) of a recent shear slit model and molecular dynamics simulations. Data for the second normal stress difference are reported for rings and ring-linear blends. While N 2 is negative and its absolute value stays below that of N 1 , as for linear polymers, the ratio -N 2 /N 1 is unambiguously larger for rings compared to linear polymer solutions with the same number of entanglements (almost by factor of two), in agreement with recent non-equilibrium molecular dynamics simulations. Further, -N 2 exhibits slightly weaker shear rate dependence compared to N 1 at high rates, and the respective power-law exponents can be rationalized in view of the slit model (3/7) and simulations (0.6), although further work is needed to unravel the molecular original of the observed behaviour. The comparison of shear and elongational stress growth coefficients for blends reflects the effect of ring-linear threading which leads to significant viscosity enhancement in elongation. Along the same lines, the elongational stress is much larger than the first normal stress in shear, and their ratio is much larger for rings and ring-linear blends compared to linear polymers. This conforms the interlocking scenario of rings and their important role in mechanically reinforcing linear matrices.

5.
Phys Rev Lett ; 123(21): 218003, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31809142

RESUMEN

Stress relaxation upon cessation of shear flow is known to be described by single-mode or multimode monotonic exponential decays. This is considered to be ubiquitous in nature. However, we found that, in some cases, the relaxation becomes anomalous in that an increase in the relaxing stress is observed. Those observations were made for physicochemically very different systems, having in common, however, the presence of self-associating units generating structures at large length scales. The nonmonotonic stress relaxation can be described phenomenologically by a generic model based on a redistribution of energy after the flow has stopped. When broken bonds are reestablished after flow cessation, the released energy is partly used to locally increase the elastic energy by the formation of deformed domains. If shear has induced order such that these elastic domains are partly aligned, the reestablishing of bonds gives rise to an increase of the overall stress.

6.
Langmuir ; 35(52): 17103-17113, 2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31793788

RESUMEN

The yet virtually unexplored class of soft colloidal rods with a small aspect ratio is investigated and shown to exhibit a very rich phase and dynamic behavior, spanning from liquid to nearly melt state. Instead of the nematic order, these short and soft nanocylinders alter their organization with increasing concentration from isotropic liquid with random orientation to small domains with preferred local orientation and eventually a multidomain arrangement with a local orientational order. The latter gives rise to a kinetically suppressed state akin to structural glass with detectable terminal relaxation, which, on further increasing concentration, reveals features of hexagonally packed order as in ordered block copolymers. The respective dynamic response comprises four regimes, all above the overlapping concentration of 0.02 g/mL:(I) from 0.03 to 0.1 g/mol, the system undergoes a liquid-to-solidlike transition with a structural relaxation time that grows by 4 orders of magnitude. (II) From 0.1 to 0.2 g/mL, a dramatic slowing-down is observed and is accompanied by an evolution from isotropic to a multidomain structure. (III) Between 0.2 and 0.6 g/mol, the suspensions exhibit signatures of shell interpenetration and jamming, with the colloidal plateau modulus depending linearly on concentration. (IV) At 0.74 g/mL, in the densely jammed state, the viscoelastic signature of hexagonally packed cylinders from microphase-separated block copolymers is detected. These properties set short and soft nanocylinders apart from long colloidal rods (with a large aspect ratio) and provide insights for fundamentally understanding the physics in this intermediate soft colloidal regime and for tailoring the flow properties of nonspherical soft colloids.

7.
Soft Matter ; 15(42): 8627-8637, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31631202

RESUMEN

The defense mechanism of hagfish against predators is based on its ability to form slime within a few milliseconds. Hagfish slime consists of two main components, namely mucin-like glycoproteins and long protein threads, which together entrap vast amounts of water and thus form a highly dilute hydrogel. Here, we investigate the mucin part of this hydrogel, in particular the role of the saline marine environment on the viscoelasticity and structure. By means of dynamic light scattering (DLS), shear and extensional rheology we probe the diffusion dynamics, the flow behavior, and the longest filament breaking time of hagfish mucin solutions. Using DLS we find a concentration-independent diffusion coefficient - characteristic for polyelectrolytes - up to the entanglement regime of 0.2 mg ml-1, which is about ten times higher than the natural concentration of hagfish mucin in hagfish slime. We also observe a slow relaxation process associated with clustering, probably due to electrostatic interactions. Shear rheology further revealed that hagfish mucin possesses pronounced viscoelastic properties at high concentrations (3 mg ml-1), showing that mucin alone achieves mechanical properties similar to those of natural hagfish slime (mucins and protein threads). The main effects of added seawater salts, and predominantly CaCl2 is to reduce the intensity of the slow relaxation process, which suggests that calcium ions lead to an ionotropic gelation of hagfish mucins.


Asunto(s)
Anguila Babosa/química , Hidrogeles/química , Mucinas/química , Animales , Citoesqueleto/química , Cinética , Conformación Proteica , Multimerización de Proteína
8.
Biomacromolecules ; 19(9): 3840-3852, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30095907

RESUMEN

A novel, multifunctional hydrogel that exhibits a unique set of properties for the effective treatment of pancreatic cancer (PC) is presented. The material is composed of a pentablock terpolypeptide of the type PLys- b-(PHIS- co-PBLG)-PLys- b-(PHIS- co-PBLG)- b-PLys, which is a noncytotoxic polypeptide. It can be implanted via the least invasive route and selectively delivers gemcitabine to efficiently treat PC. Simply mixing the novel terpolypeptide with an aqueous solution of gemcitabine within a syringe results in the facile formation of a hydrogel that has the ability to become liquid under the shear rate of the plunger. Upon injection in the vicinity of cancer tissue, it immediately reforms into a hydrogel due to the unique combination of its macromolecular architecture and secondary structure. Because of its pH responsiveness, the hydrogel only melts close to PC; thus, the drug can be delivered directionally toward the cancerous rather than healthy tissues in a targeted, controlled, and sustained manner. The efficacy of the hydrogel was tested in vivo on human to mouse xenografts using the drug gemcitabine. It was found that the efficacy of the hydrogel loaded with only 40% of the drug delivered in one dose was equal to or slightly better than the peritumoral injection of 100% of the free drug delivered in two doses, the typical chemotherapy used in clinics so far. This result suggests that the hydrogel can direct the delivery of the encapsulated drug effectively in the tumor tissue. Enzymes lead to its biodegradation, avoiding removal by resection of the polypeptidic carrier after cargo delivery. The unique properties of the hydrogel formed can be predetermined through its molecular characteristics, rendering it a promising modular material for many biological applications.


Asunto(s)
Antineoplásicos/administración & dosificación , Desoxicitidina/análogos & derivados , Liberación de Fármacos , Hidrogeles/química , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Desoxicitidina/administración & dosificación , Desoxicitidina/uso terapéutico , Femenino , Histidina/química , Humanos , Concentración de Iones de Hidrógeno , Masculino , Ratones , Ratones Endogámicos NOD , Ácido Poliglutámico/análogos & derivados , Ácido Poliglutámico/química , Gemcitabina
9.
Langmuir ; 33(40): 10501-10510, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28889742

RESUMEN

In a refinery, undesired high levels of salt concentration in crude oils are reduced by the contact of water with crude oils, where an emulsion is formed. Later, the separation of the water from the desalted oil is essential for the quality of both wastewater discharge and refined oil. However, complex components of crude oils such as asphaltenes may stabilize these emulsions, causing difficulties in efficient separation. Here, we show the coalescence inhibition caused by asphaltene adsorption for both water-in-oil and oil-in-water emulsions, where the oil phase consists of a simple model of asphaltenes dissolved in toluene. We find that oil-in-water emulsions are less stable than water-in-oil emulsions by using a newly developed instrument where controlled experiments can be performed to measure the coalescence time of a single droplet against an oil/water interface as a function of asphaltene aging (associated with the adsorption process of asphaltene molecules onto the interfaces) and asphaltene concentration. Furthermore, we find that the coalescence time for water droplets exhibits a maximum because of a spontaneous emulsification at the oil/water interface that produces droplets consisting of asphaltene-laden water droplets.

10.
Langmuir ; 32(27): 6956-66, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27329929

RESUMEN

We form films of carboxylated polystyrene particles (C-PS) at the air-water interface and investigate the effect of subphase pH on their structure and rheology by using a suite of complementary experimental techniques. Our results suggest that electrostatic interactions drive the stability and the structural order of the films. In particular, we show that by increasing the pH of the subphase from 9 up to 13, the films exhibit a gradual transition from solid to liquidlike, which is accompanied by a loss of the long-range order (that characterizes them at lower values of pH). Direct optical visualization of the layers, scanning electron microscopy, and surface pressure isotherms indicate that the particles deposited at the interface form three-dimensional structures involving clusters, with the latter being suppressed and a quasi-2D particle configuration eventually reached at the highest pH values. Evidently, the properties of colloidal films can be tailored significantly by altering the pH of the subphase.

11.
Langmuir ; 32(13): 3139-51, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26978461

RESUMEN

Semifluorinated alkanes form monolayers with interesting properties at the air-water interface due to their pronounced amphi-solvophobic nature and the stiffness of the fluorocarbons. In the present work, using a combination of structural and dynamic probes, we investigated how small molecular changes can be used to control the properties of such an interface, in particular its organization, rheology, and reversibility during compression-expansion cycles. Starting from a reference system perfluor(dodecyl)dodecane, we first retained the linear structure but changed the linkage groups between the alkyl chains and the fluorocarbons, by introducing either a phenyl group or two oxygens. Next, the molecular structure was changed from linear to branched, with four side chains (two fluorocarbons and two hydrocarbons) connected to extended aromatic cores. Neutron reflectivity at the air-water interface and scanning force microscopy on deposited films show how the changes in the molecular structure affect molecular arrangement relative to the interface. Rheological and compression-expansion measurements demonstrate the significant consequences of these changes in molecular structure and interactions on the interfacial properties. Remarkably, even with these simple molecules, a wide range of surface rheological behaviors can be engineered, from viscous over viscoelastic to brittle solids, for very similar values of the surface pressure.

12.
Soft Matter ; 11(42): 8296-312, 2015 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-26356800

RESUMEN

We present extensive experimental and theoretical investigations on the structure, phase behavior, dynamics and rheology of model soft-hard colloidal mixtures realized with large, multiarm star polymers as the soft component and smaller, compact stars as the hard one. The number and length of the arms in star polymers control their softness, whereas the size ratio, the overall density and the composition are additional parameters varied for the mixtures. A coarse-grained theoretical strategy is employed to predict the structure of the systems as well as their ergodicity properties on the basis of mode coupling theory, for comparison with rheological measurements on the samples. We discovered that dynamically arrested star-polymer solutions recover their ergodicity upon addition of colloidal additives. At the same time the system displays demixing instability, and the binodal of the latter meets the glass line in a way that leads, upon addition of a sufficient amount of colloidal particles, to an arrested phase separation and reentrant solidification. We present evidence for a subsequent solid-to-solid transition well within the region of arrested phase separation, attributed to a hard-sphere-mixture type of glass, due to osmotic shrinkage of the stars at high colloidal particle concentrations. We systematically investigated the interplay of star functionality and size ratio with glass melting and demixing, and rationalized our findings by the depletion of the big stars due to the smaller colloids. This new depletion potential in which, contrary to the classic colloid-polymer case, the hard component depletes the soft one, has unique and novel characteristics and allows the calculation of phase diagrams for such mixtures. This work covers a broad range of soft-hard colloidal mixture compositions in which the soft component exceeds the hard one in size and provides general guidelines for controlling the properties of such complex mixtures.

13.
Phys Chem Chem Phys ; 17(43): 28844-52, 2015 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-26451399

RESUMEN

Semifluorinated alkyl-azobenzene derivatives (SFAB) can form stable Langmuir layers at the air-water interface. These systems combine the amphiphobic character of semifluorinated alkyl units as structure-directing motifs with photochromic behavior based on the well-known reversible cis-trans isomerization upon irradiation with UV and visible light. Herein, we report our investigations of the structural and dynamic tunability of these SFAB layers at the air-water interface in response to an external light stimulus. The monolayer structures and properties of [4-(heptadecafluorooctyl)phenyl](4-octylphenyl)diazene (F8-azo-H8) and bis(4-octylphenyl)diazene (H8-azo-H8) were studied by neutron reflectivity, surface pressure-area isotherms with compression-expansion cycles, and interfacial rheology. We find that UV irradiation reversibly influences the packing behavior of the azobenzene molecules and interpret this as a transition from organized layer structures with the main axis of the molecule vertically oriented in the trans form to random packing of the cis isomer. Interestingly, this trans-cis isomerization leads to an increase in surface pressure, which is accompanied by a decrease in viscoelastic moduli. These results suggest ways of tailoring the properties of responsive fluid interfaces.

14.
Soft Matter ; 10(7): 1032-44, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24983117

RESUMEN

In an attempt to relate atomistic information to the rheological response of a large dendritic object, interand intramolecular hydrogen bonds and p,p-interactions have been characterized in a dendronized polymer (DP) that consists of a polymethylmethacrylate backbone with tree-like branches of generation four (PG4) and contains both amide and aromatic groups. Extensive atomistic molecular dynamics simulations have been carried out on (i) an isolated PG4 chain and (ii) ten dimers formed by two PG4 chains associated with different degrees of interpenetration. Results indicate that the amount of nitrogen atoms involved in hydrogen bonding is ~11% while ~15% of aromatic groups participate in p,pinteractions. Furthermore, in both cases intramolecular interactions clearly dominate over intermolecular ones, while exhibiting markedly different behaviors. Specifically, the amount of intramolecular hydrogen bonds increases when the interpenetration of the two chains decreases, whereas intramolecular p,pinteractions remain practically insensitive to the amount of interpenetration. In contrast, the strength of the corresponding two types of intermolecular interactions decreases with interpenetration. Although the influence of complexation on the density and cross-sectional radius is relatively small, interpenetration affects significantly the molecular length of the DP. These results support the idea of treating DPs as long colloidal molecules.

15.
J Chem Phys ; 141(11): 114907, 2014 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-25240372

RESUMEN

We present from simulations and experiments results on the linear and nonlinear rheology of a moderate functionality, low molecular weight unentangled polystyrene (PS) star melt. The PS samples were anionically synthesized and close to monodisperse while their moderate functionality ensures that they do not display a pronounced core effect. We employ a highly coarse-grained model known as Responsive Particle Dynamics where each star polymer is approximated as a point particle. The eliminated degrees of freedom are used in the definition of an appropriate free energy as well as describing the transient pair-wise potential between particles that accounts for the viscoelastic response. First we reproduce very satisfactorily the experimental moduli using simulation. We then consider the nonlinear response of the same polymer melts by implementing a start-up shear protocol for a wide range of shear rates. As in experiments, we observe the development of a stress overshoot with increasing shear rate followed by a steady-state shear stress. We also recover the shear-thinning nature of the melt, although we slightly overestimate the extent of shear-thinning with simulations. In addition, we study relaxations upon the removal of shear where we find encouraging agreement between experiments and simulations, a finding that corroborates our agreement for the linear rheology.


Asunto(s)
Modelos Teóricos , Polímeros/química , Reología
16.
Macromolecules ; 57(10): 4826-4832, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38910846

RESUMEN

Well-characterized single-chain nanoparticles (SCNPs), synthesized from a linear polystyrene precursor through an intramolecular [4 + 4] thermal cycloaddition cross-linking reaction in dilute conditions, were added to entangled polystyrene melts at different concentrations. Starting from the pure linear melt, which is much more viscous than the melt of SCNPs, the zero-shear viscosity increased upon the addition of nanoparticles and reached a maximum before eventually dropping to the value of the SCNP melt. Molecular simulations reveal the origin of this unexpected behavior, which is the interplay of the very different compositional dependences of the dynamics of the two components. The SCNPs become much slower than the linear chains as their concentration decreases because they are threaded by the linear chains, reaching a maximum viscosity which is higher than that of the linear chains at a fraction of about 20%. This behavior is akin to that of single-loop ring polymers when added to linear matrices. This finding provides insights into the design and use of SCNPs as effective entropic viscosity modifiers of polymers and contributes to the discussion of the physics of loopy structures.

17.
Macromolecules ; 57(3): 926-939, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38911231

RESUMEN

The design of functional polymeric materials with tunable response requires a synergetic use of macromolecular architecture and interactions. Here, we combine experiments with computer simulations to demonstrate how physical properties of gels can be tailored at the molecular level, using star block copolymers with alternating block sequences as a paradigm. Telechelic star polymers containing attractive outer blocks self-assemble into soft patchy nanoparticles, whereas their mirror-image inverted architecture with inner attractive blocks yields micelles. In concentrated solutions, bridged and interpenetrated hexagonally packed nanocylinders are formed, respectively, with distinct structural and rheological properties. The phase diagrams exhibit a peculiar re-entrance where the hexagonal phase melts upon both heating and cooling because of solvent-block and block-block interactions. The bridged nanostructure is characterized by similar deformability, extended structural coherence, enhanced elasticity, and yield stress compared to micelles or typical colloidal gels, which make them promising and versatile materials for diverse applications.

18.
Phys Rev Lett ; 111(20): 208301, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24289711

RESUMEN

By employing rheological experiments, mode coupling theory, and computer simulations based on realistic coarse-grained models, we investigate the effects of small, hard colloids on the glassy states formed by large, soft colloids. Multiarm star polymers mimic hard and soft colloids by appropriately varying the number and size of their arms. The addition of hard colloids leads, depending on their concentration, to either melting of the soft glass or the emergence of two distinct glassy states. We explain our findings by depletion of the colloids adjacent to the stars, which leads to an arrested phase separation when the repulsive glass line meets the demixing binodal. The parameter-free agreement between experiment, theory, and simulations suggests the generic nature of our results and opens the route for designing soft-hard colloidal composites with tunable rheology.

19.
Macromolecules ; 56(5): 1818-1827, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36938509

RESUMEN

Liquid mixtures composed of colloidal particles and much smaller non-adsorbing linear homopolymers can undergo a gelation transition due to polymer-mediated depletion forces. We now show that the addition of linear polymers to suspensions of soft colloids having the same hydrodynamic size yields a liquid-to-gel-to-re-entrant liquid transition. In particular, the dynamic state diagram of 1,4-polybutadiene star-linear polymer mixtures was determined with the help of linear viscoelastic and small-angle X-ray scattering experiments. While keeping the star polymers below their nominal overlap concentration, a gel was formed upon increasing the linear polymer content. Further addition of linear chains yielded a re-entrant liquid. This unexpected behavior was rationalized by the interplay of three possible phenomena: (i) depletion interactions, driven by the size disparity between the stars and the polymer length scale which is the mesh size of its entanglement network; (ii) colloidal deswelling due to the increased osmotic pressure exerted onto the stars; and (iii) a concomitant progressive suppression of the depletion efficiency on increasing the polymer concentration due to reduced mesh size, hence a smaller range of attraction. Our results unveil an exciting new way to tailor the flow of soft colloids and highlight a largely unexplored path to engineer soft colloidal mixtures.

20.
J Phys Chem B ; 126(35): 6713-6724, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36018571

RESUMEN

A methodology to investigate the linear viscoelastic properties of complex fluids at elevated pressures (up to 120 MPa) is presented. It is based on a dynamic light scattering (DLS) setup coupled with a stainless steel chamber, where the test sample is pressurized by means of an inert gas. The viscoelastic spectra are extracted through passive microrheology. We discuss an application to hydrogen-bonding motif 2,4-bis(2-ethylhexylureido)toluene (EHUT), which self-assembles into supramolecular structures (tubes and filaments) in apolar solvents dodecane and cyclohexane. High levels of pressure (roughly above 20 MPa) are found to slow down the terminal relaxation process; however, the increases in the entanglement plateau modulus and the associated persistence length are not significant. The concentration dependence of the plateau modulus, relaxation times (fast and slow), and correlation length is practically the same for all pressures and exhibits distinct power-law behavior in different regimes. Within the tube phase in dodecane, the relative viscosity increment is weakly enhanced with increasing pressure and reaches a plateau at about 60 MPa. In fact, depending on concentration, the application of pressure in the tube regime may lead to a transition from a viscous (unentangled) to a viscoelastic (partially entangled to well-entangled) solution. For well-entangled, long tubes, the extent of the plateau regime (ratio of high- to low-moduli crossover frequencies) increases with pressure. The collective information from these observations is summarized in a temperature-pressure state diagram. These findings provide ingredients for the formulation of a solid theoretical framework to better understand and exploit the role of pressure in the structure and dynamics of supramolecular polymers.


Asunto(s)
Reología , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA