Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Child Dev ; 90(4): 1185-1201, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29171007

RESUMEN

Effects of full-time ability grouping on students' academic self-concept (ASC) and mathematics achievement were investigated in the first 3 years of secondary school (four waves of measurement; students' average age at first wave: 10.5 years). Students were primarily from middle and upper class families living in southern Germany. The study sample comprised 148 (60% male) students from 14 gifted classes and 148 (57% male) students from 25 regular classes (matched by propensity score matching). Data analyses involved multilevel and latent growth curve analyses. Findings revealed no evidence for contrast effects of class-average achievement or assimilation effects of class type on students' ASC. ASC remained stable over time. Students in gifted classes showed higher achievement gains than students in regular classes.


Asunto(s)
Éxito Académico , Curriculum , Inteligencia , Matemática/educación , Autoimagen , Estudiantes/psicología , Adolescente , Niño , Femenino , Alemania , Humanos , Masculino , Instituciones Académicas
2.
mBio ; : e0217423, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37843364

RESUMEN

Facing rapid fluctuations in their natural environment, extremophiles, like the hyperthermophilic archaeon Pyrococcus furiosus, exhibit remarkable adaptability to extreme conditions. However, our understanding of their dynamic cellular responses remains limited. This study integrates RNA-sequencing and mass spectrometry data, thereby elucidating transcriptomic and proteomic responses to heat and cold shock stress in P. furiosus. Our results reveal rapid and dynamic changes in gene and protein expression following these stress responses. Heat shock triggers extensive transcriptome reprogramming, orchestrated by the transcriptional regulator Phr, targeting a broader gene repertoire than previously demonstrated. For heat shock signature genes, RNA levels swiftly return to baseline upon recovery, while protein levels remain persistently upregulated, reflecting a rapid but sustained response. Intriguingly, cold shock at 4°C elicits distinct short- and long-term responses at both RNA and protein levels. Cluster analysis identified gene sets with either congruent or contrasting trends in RNA and protein changes, representing well-separated arCOG groups tailored to their individual cellular responses. Particularly, upregulation of ribosomal proteins and significant enrichment of 5'-leadered sequences in cold-shock responsive genes suggest that translation regulation is important during cold shock adaption. Further investigating transcriptomic features, we reveal that thermal stress genes are equipped with basal sequence elements, such as strong promoter and poly(U)-terminators, facilitating a regulated response of the respective transcription units. Our study provides a comprehensive overview of the cellular response to temperature stress, advancing our understanding of stress response mechanisms in hyperthermophilic archaea and providing valuable insights into the molecular adaptations that facilitate life in extreme environments.IMPORTANCEExtreme environments provide unique challenges for life, and the study of extremophiles can shed light on the mechanisms of adaptation to such conditions. Pyrococcus furiosus, a hyperthermophilic archaeon, is a model organism for studying thermal stress response mechanisms. In this study, we used an integrated analysis of RNA-sequencing and mass spectrometry data to investigate the transcriptomic and proteomic responses of P. furiosus to heat and cold shock stress and recovery. Our results reveal the rapid and dynamic changes in gene and protein expression patterns associated with these stress responses, as well as the coordinated regulation of different gene sets in response to different stressors. These findings provide valuable insights into the molecular adaptations that facilitate life in extreme environments and advance our understanding of stress response mechanisms in hyperthermophilic archaea.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA