RESUMEN
BRCA1 promotes error-free, homologous recombination-mediated repair (HRR) of DNA double-stranded breaks (DSBs). When excessive and uncontrolled, BRCA1 HRR activity promotes illegitimate recombination and genome disorder. We and others have observed that the BRCA1-associated protein RAP80 recruits BRCA1 to postdamage nuclear foci, and these chromatin structures then restrict the amplitude of BRCA1-driven HRR. What remains unclear is how this process is regulated. Here we report that both BRCA1 poly-ADP ribosylation (PARsylation) and the presence of BRCA1-bound RAP80 are critical for the normal interaction of BRCA1 with some of its partners (e.g., CtIP and BACH1) that are also known components of the aforementioned focal structures. Surprisingly, the simultaneous loss of RAP80 and failure therein of BRCA1 PARsylation results in the dysregulated accumulation in these foci of BRCA1 complexes. This in turn is associated with the intracellular development of a state of hyper-recombination and gross chromosomal disorder. Thus, physiological RAP80-BRCA1 complex formation and BRCA1 PARsylation contribute to the kinetics by which BRCA1 HRR-sustaining complexes normally concentrate in nuclear foci. These events likely contribute to aneuploidy suppression.
Asunto(s)
Proteína BRCA1/metabolismo , Proteínas de Unión al ADN/metabolismo , Chaperonas de Histonas/metabolismo , Reparación del ADN por Recombinación , Proteína BRCA1/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Cromosomas/genética , Cromosomas/metabolismo , Daño del ADN , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Chaperonas de Histonas/genética , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poli ADP Ribosilación , Unión ProteicaRESUMEN
Histological grading provides prognostic stratification of colorectal cancer (CRC) by scoring heterogeneous phenotypes. Features of aggressiveness include aberrant mitotic spindle configurations, chromosomal breakage, and bizarre multicellular morphology, but pathobiology is poorly understood. Protein kinase C zeta (PKCz) controls mitotic spindle dynamics, chromosome segregation, and multicellular patterns, but its role in CRC phenotype evolution remains unclear. Here, we show that PKCz couples genome segregation to multicellular morphology through control of interphase centrosome anchoring. PKCz regulates interdependent processes that control centrosome positioning. Among these, interaction between the cytoskeletal linker protein ezrin and its binding partner NHERF1 promotes the formation of a localized cue for anchoring interphase centrosomes to the cell cortex. Perturbation of these phenomena induced different outcomes in cells with single or extra centrosomes. Defective anchoring of a single centrosome promoted bipolar spindle misorientation, multi-lumen formation, and aberrant epithelial stratification. Collectively, these disturbances induce cribriform multicellular morphology that is typical of some categories of low-grade CRC. By contrast, defective anchoring of extra centrosomes promoted multipolar spindle formation, chromosomal instability (CIN), disruption of glandular morphology, and cell outgrowth across the extracellular matrix interface characteristic of aggressive, high-grade CRC. Because PKCz enhances apical NHERF1 intensity in 3D epithelial cultures, we used an immunohistochemical (IHC) assay of apical NHERF1 intensity as an indirect readout of PKCz activity in translational studies. We show that apical NHERF1 IHC intensity is inversely associated with multipolar spindle frequency and high-grade morphology in formalin-fixed human CRC samples. To conclude, defective PKCz control of interphase centrosome anchoring may underlie distinct categories of mitotic slippage that shape the development of low- or high-grade CRC phenotypes. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Asunto(s)
Centrosoma/enzimología , Neoplasias Colorrectales/enzimología , Interfase , Proteína Quinasa C/metabolismo , Células CACO-2 , Proliferación Celular , Forma de la Célula , Inestabilidad Cromosómica , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Humanos , Clasificación del Tumor , Fenotipo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteína Quinasa C/genética , Transducción de Señal , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismoRESUMEN
mRNA splicing and export plays a key role in the regulation of gene expression, with recent evidence suggesting an additional layer of regulation of gene expression and cellular function through the selective splicing and export of genes within specific pathways. Here we describe a role for the RNA processing factors THRAP3 and BCLAF1 in the regulation of the cellular DNA damage response (DDR) pathway, a key pathway involved in the maintenance of genomic stability and the prevention of oncogenic transformation. We show that loss of THRAP3 and/or BCLAF1 leads to sensitivity to DNA damaging agents, defective DNA repair and genomic instability. Additionally, we demonstrate that this phenotype can be at least partially explained by the role of THRAP3 and BCLAF1 in the selective mRNA splicing and export of transcripts encoding key DDR proteins, including the ATM kinase. Moreover, we show that cancer associated mutations within THRAP3 result in deregulated processing of THRAP3/BCLAF1-regulated transcripts and consequently defective DNA repair. Taken together, these results suggest that THRAP3 and BCLAF1 mutant tumors may be promising targets for DNA damaging chemotherapy.
Asunto(s)
Transporte Activo de Núcleo Celular/genética , Daño del ADN , Proteínas de Unión al ADN/genética , Empalme del ARN , Proteínas Represoras/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica/métodos , Células HEK293 , Humanos , Hibridación Fluorescente in Situ , Microscopía Fluorescente , Mutación , Interferencia de ARN , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismoRESUMEN
R-loop structures act as modulators of physiological processes such as transcription termination, gene regulation, and DNA repair. However, they can cause transcription-replication conflicts and give rise to genomic instability, particularly at telomeres, which are prone to forming DNA secondary structures. Here, we demonstrate that BRCA1 binds TERRA RNA, directly and physically via its N-terminal nuclear localization sequence, as well as telomere-specific shelterin proteins in an R-loop-, and a cell cycle-dependent manner. R-loop-driven BRCA1 binding to CpG-rich TERRA promoters represses TERRA transcription, prevents TERRA R-loop-associated damage, and promotes its repair, likely in association with SETX and XRN2. BRCA1 depletion upregulates TERRA expression, leading to overly abundant TERRA R-loops, telomeric replication stress, and signs of telomeric aberrancy. Moreover, BRCA1 mutations within the TERRA-binding region lead to an excess of TERRA-associated R-loops and telomeric abnormalities. Thus, normal BRCA1/TERRA binding suppresses telomere-centered genome instability.
Asunto(s)
Proteína BRCA1/metabolismo , Daño del ADN/genética , Estructuras R-Loop , ARN Largo no Codificante/metabolismo , Telómero/metabolismo , Proteína BRCA1/genética , Ciclo Celular/genética , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Cromatografía Liquida , Islas de CpG , ADN Helicasas/metabolismo , Exorribonucleasas/metabolismo , Humanos , Hibridación Fluorescente in Situ , Espectrometría de Masas , Enzimas Multifuncionales/metabolismo , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Estructuras R-Loop/genética , ARN Helicasas/metabolismo , ARN Largo no Codificante/genética , ARN Interferente Pequeño , Telómero/genéticaRESUMEN
Myelodysplastic syndromes (MDS) are haematopoietic malignancies that are characterised by a heterogeneous clinical course. In recent years, sequencing efforts have uncovered recurrent somatic mutations within RNA splicing factors, including SF3B1, SRSF2, U2AF1 and ZRSR2. The most frequently mutated gene is SF3B1, mutated in 17% of MDS patients. While SF3B1 mutations and their effects on splicing have been well characterised, much remains to be explored about their more far-reaching effects on cellular homeostasis. Given that mRNA splicing and nuclear export are coordinated processes, we hypothesised that SF3B1 mutation might also affect export of certain mRNAs and that this may represent a targetable pathway for the treatment of SF3B1-mutant MDS. We used CRISPR/Cas9-genome editing to create isogenic cellular models. Comprehensive transcriptome and proteome profiling of these cells identified alterations in the splicing and export of components of the translational machinery, primarily tRNA synthetases, in response to the SF3B1 K700E mutation. While steady-state protein synthesis was unaffected, SF3B1 mutant cells were more sensitive to the clinically-relevant purine analogue, 8-azaguanine. In this study, we also demonstrated that 8-azaguanine affects splicing. Our results suggest that the simultaneous targeting of RNA metabolism and splicing by 8-azaguanine represents a therapeutic opportunity for SF3B1-mutant myelodysplastic syndromes.
Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Citoplasma/enzimología , Mutación , Síndromes Mielodisplásicos/genética , Fosfoproteínas/genética , Factores de Empalme de ARN/genética , Empalme del ARN , Aminoacil-ARNt Sintetasas/metabolismo , Línea Celular Tumoral , Edición Génica/métodos , Perfilación de la Expresión Génica/métodos , Células HEK293 , Humanos , Células K562 , Síndromes Mielodisplásicos/metabolismo , Síndromes Mielodisplásicos/terapia , Fosfoproteínas/metabolismo , Biosíntesis de Proteínas/genética , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Factores de Empalme de ARN/metabolismoRESUMEN
Despite consistent research into the molecular principles of the DNA damage repair pathway for almost two decades, it has only recently been found that RNA metabolism is very tightly related to this pathway, and the two ancient biochemical mechanisms act in alliance to maintain cellular genomic integrity. The close links between these pathways are well exemplified by examining the base excision repair pathway, which is now well known for dual roles of many of its members in DNA repair and RNA surveillance, including APE1, SMUG1, and PARP1. With additional links between these pathways steadily emerging, this review aims to provide a summary of the emerging roles for DNA repair proteins in the post-transcriptional regulation of RNAs. WIREs RNA 2016, 7:604-619. doi: 10.1002/wrna.1353 For further resources related to this article, please visit the WIREs website.
Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismoRESUMEN
Germline mutations in BRCA1 predispose carriers to a high incidence of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through critical roles in DNA repair, cell-cycle arrest, and transcriptional control. A major question has been why BRCA1 loss or mutation leads to tumors mainly in estrogen-regulated tissues, given that BRCA1 has essential functions in all cell types. Here, we report that estrogen and estrogen metabolites can cause DNA double-strand breaks (DSB) in estrogen receptor-α-negative breast cells and that BRCA1 is required to repair these DSBs to prevent metabolite-induced genomic instability. We found that BRCA1 also regulates estrogen metabolism and metabolite-mediated DNA damage by repressing the transcription of estrogen-metabolizing enzymes, such as CYP1A1, in breast cells. Finally, we used a knock-in human cell model with a heterozygous BRCA1 pathogenic mutation to show how BRCA1 haploinsufficiency affects these processes. Our findings provide pivotal new insights into why BRCA1 mutation drives the formation of tumors in estrogen-regulated tissues, despite the general role of BRCA1 in DNA repair in all cell types.