Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 20(4): 2009-2016, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36884008

RESUMEN

Praziquantel (PZQ) is a chiral class-II drug, and it is used as a racemate for the treatment of schistosomiasis. The knowledge of several cocrystals with dicarboxylic acids has prompted the realization of solid solutions of PZQ with both enantiomers of malic acid and tartaric acid. Here, the solid form landscape of such a six-component system has been investigated. In the process, two new cocrystals were structural-characterized and three non-stoichiometric, mixed crystal forms identified and isolated. Thermal and solubility analysis indicates a fourfold solubility advantage for the newly prepared solid solutions over the pure drug. In addition, a pharmacokinetic study was conducted in rats, which involved innovative mini-capsules for the oral administration of the solid samples. The available data indicate that the faster dissolution rate of the solid solutions translates in faster absorption of the drug and helps maintain a constant steady-state concentration.


Asunto(s)
Antihelmínticos , Praziquantel , Animales , Ratas , Praziquantel/química , Antihelmínticos/química , Solubilidad
2.
Angew Chem Int Ed Engl ; 62(19): e202212688, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36617841

RESUMEN

Crystal engineering has exclusively focused on the development of advanced materials based on small organic molecules. We now demonstrate how the cocrystallization of a polymer yields a material with significantly enhanced thermal stability but equivalent mechanical flexibility. Isomorphous replacement of one of the cocrystal components enables the formation of solid solutions with melting points that can be readily fine-tuned over a usefully wide temperature range. The results of this study credibly extend the scope of crystal engineering and cocrystallization from small molecules to polymers.

3.
Int J Mol Sci ; 20(5)2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30870971

RESUMEN

Praziquantel (PZQ) is the first line drug for the treatment of schistosome infections and is included in the WHO Model List of Essential Medicines for Children. In this study, the association of mechanochemical activation (MA) and the spray congealing (SC) technology was evaluated for developing a child-friendly PZQ dosage form, with better product handling and biopharmaceutical properties, compared to MA materials. A 1:1 by wt PZQ-Povidone coground-was prepared in a vibrational mill under cryogenic conditions, for favoring amorphization. PZQ was neat ground to obtain its polymorphic form (Form B), which has an improved solubility and bioactivity. Then, activated PZQ powders were loaded into microparticles (MPs) by the SC technology, using the self-emulsifying agent Gelucire® 50/13 as a carrier. Both, the activated powders and the corresponding loaded MPs were characterized for morphology, wettability, solubility, dissolution behavior, drug content, and drug solid state (Hot Stage Microscopy (HSM), Differential Scanning Calorimetry (DSC), X-Ray Powder Diffraction Studies (PXRD), and FT-IR). Samples were also in vitro tested for a comparison with PZQ against Schistosoma mansoni newly transformed schistosomula (NTS) and adults. MPs containing both MA systems showed a further increase of biopharmaceutical properties, compared to the milled powders, while maintaining PZQ bioactivity. MPs containing PZQ Form B represented the most promising product for designing a new PZQ formulation.


Asunto(s)
Praziquantel/química , Praziquantel/uso terapéutico , Esquistosomiasis/tratamiento farmacológico , Animales , Antihelmínticos/química , Antihelmínticos/uso terapéutico , Rastreo Diferencial de Calorimetría/métodos , Química Farmacéutica/métodos , Niño , Composición de Medicamentos/métodos , Humanos , Povidona/química , Povidona/uso terapéutico , Polvos/química , Polvos/uso terapéutico , Schistosoma mansoni/efectos de los fármacos , Solubilidad/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X/métodos
4.
Molecules ; 22(11)2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29117131

RESUMEN

In the present study results related to the in vivo administration of Natural Deep Eutectic Solvents (NADES)-solubilized berberine are reported for the first time. NADES are mixtures of small natural compounds having a melting point significantly lower than that of any individual component. Such solvents have gained much attention of the scientific community in the green chemistry area, being considered useful alternatives to common organic solvents. NADES can be used also as administration vehicles, and this can be attractive for nutraceutical products when eutectics are formed with food grade ingredients. In this work, different NADES were prepared using mainly food grade constituents and were tested as solvents for the alkaloid berberine. Three selected NADES/berberine solutions and an aqueous suspension were orally administered to mice with in dose of 50 mg/Kg. Blood levels of berberine were measured by a LC-MS/MS method. The pharmacokinetic analysis revealed a 2-20 fold increase in blood concentration of NADES/berberine with significant changes in pharmacokinetic profile. Natural Deep Eutectic Solvents may thus be considered attractive solubilizing agents and may also play a role in the increase of absorption of poorly bioavailable natural products such as berberine.


Asunto(s)
Berberina , Solventes , Animales , Berberina/química , Berberina/farmacocinética , Berberina/farmacología , Relación Dosis-Respuesta a Droga , Ratones , Ratones Endogámicos BALB C , Solventes/química , Solventes/farmacocinética , Solventes/farmacología
5.
Mol Pharm ; 13(9): 3034-42, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27428180

RESUMEN

Microcrystalline vinpocetine, coground with cross-linked polyvinylpyrrolidone, affords hybrids containing nanosized drug nanocrystals, the size and size distributions of which depend on milling times and drug-to-polymer weight ratios. Using an innovative approach to microstructural characterization, we analyzed wide-angle X-ray total scattering data by the Debye function analysis and demonstrated the possibility to characterize pharmaceutical solid dispersions obtaining a reliable quantitative view of the physicochemical status of the drug dispersed in an amorphous carrier. The microstructural properties derived therefrom have been successfully employed in reconciling the enigmatic difference in behavior between in vitro and in vivo solubility tests performed on nanosized vinpocetine embedded in a polymeric matrix.


Asunto(s)
Nanoestructuras/química , Polímeros/química , Povidona/química , Alcaloides de la Vinca/química , Portadores de Fármacos/química
6.
Angew Chem Int Ed Engl ; 54(25): 7371-5, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25939405

RESUMEN

Mechanochemistry is an effective method for the preparation of multicomponent crystal systems. In the present work, we propose an alternative to the established liquid-assisted grinding (LAG) approach. Polymer-assisted grinding (POLAG) is demonstrated to provide a new class of catalysts for improving reaction rate and increasing product diversity during mechanochemical cocrystallization reactions. We demonstrate that POLAG provides advantages comparable to the conventional liquid-assisted process, whilst eliminating the risk of unwanted solvate formation as well as enabling control of resulting particle size. It represents a new approach for the development of functional materials through mechanochemistry, and possibly opens new routes toward the understanding of the mechanisms and pathways of mechanochemical cocrystal formation.

7.
Eur J Pharm Biopharm ; 201: 114344, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38815873

RESUMEN

We report an intriguing example of enantioselectivity in the formation of new multicomponent crystalline solid containing vinpocetine and malic acid. Several experimental data sets confirmed that the multicomponent system presents a clear enantiospecific crystallisation behaviour both in the solid-state and in solution: only the system consisting of vinpocetine and L-malic acid produces a free-flowing solid consisting of a new crystalline form, while the experiments with D-malic acid produced an amorphous and often deliquescent material. The new vinpocetine-L-malic system crystallizes in the monoclinic space group of P21 and in a 1:1 molar ratio, where the two molecules are linked through intermolecular hydrogen bonds in the asymmetric unit. The vinpocetine-DL-malic system was partially crystalline (with also traces of unreacted vinpocetine) with diffraction peaks corresponding to those of vinpocetine-L-malic acid. Solid-state NMR experiments revealed strong ionic interactions in all the three systems. However, while vinpocetine-L-malic acid system was a pure and crystalline phase, the other two systems persistently showed the presence of unreacted vinpocetine. This resulted in a significant worsening of the dissolution profile with respect to the pure vinpocetine-L-malic crystalline salt, whose dissolution kinetics appeared superior.


Asunto(s)
Cristalización , Malatos , Alcaloides de la Vinca , Malatos/química , Alcaloides de la Vinca/química , Estereoisomerismo , Espectroscopía de Resonancia Magnética/métodos , Enlace de Hidrógeno
8.
Pharmaceutics ; 16(10)2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39458664

RESUMEN

BACKGROUND/OBJECTIVES: The present work proposes a mathematical model able to describe the dissolution of poly-disperse drug spherical particles in a solution (Dissolution Rate Test-DRT). DRT is a pivotal test performed in the pharmaceutical field to qualitatively assess drug bioavailability. METHODS: The proposed mathematical model relies on the key hallmarks of DRT, such as particle size distribution, solubility, wettability, hydrodynamic conditions in the dissolving liquid of finite dimensions, and possible re-crystallization during the dissolution process. The spherical shape of the drug particles was the only cue simplification applied. Two model drugs were considered to check model robustness: theophylline (both soluble and wettable) and praziquantel (both poorly soluble and wettable). RESULTS: The DRT data analysis within the proposed model allows us to understand that for theophylline, the main resistance to dissolution is due to the boundary layer surrounding drug particles, whereas wettability plays a negligible role. Conversely, the effect of low wettability cannot be neglected for praziquantel. These results are validated by the determination of drug wettability performed while measuring the solid-liquid contact angle on four liquids with decreasing polarities. Moreover, the percentage of drug polarity was determined. CONCLUSIONS: The proposed mathematical model confirms the importance of the different physical phenomena leading the dissolution of poly-disperse solid drug particles in a solution. Although a comprehensive mathematical model was proposed and applied, the DRT data of theophylline and praziquantel was successfully fitted by means of just two fitting parameters.

9.
Mol Pharm ; 10(1): 211-24, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23186380

RESUMEN

In the present research a salt of vincamine, a poorly bioavailable indole alkaloid derived from the leaves of Vinca minor L., was synthesized in the solid state by means of a mechanochemical process employing citric acid as a reagent. The mechanochemical process was adopted as a solvent-free alternative to classical citrate synthetic route that involves the use of solvents. Since the mechanochemical salification is little studied to date and presents the disadvantage of offering a low yield, in this work, the influence of three process and formulation variables on the percentage of vincamine citrate was studied. In particular, the time of mechanical treatment (in planetary mill Fritsch P5) and the amount of citric acid were varied in order to evaluate their effect on the yield of the process, and the introduction of a solid solvent, a common pharmaceutical excipient (sodium carboxymethylcellulose, NaCMC), was considered. Due to the complexity of the resulting samples' matrix, an appropriate experimental design was employed to project the experimental trials and the influence of the three variables on the experimental response was estimated with the help of a statistical analysis. The experimental response, that is, the yield of the process corresponding to the percentage of vincamine in the protonated form, was unconventionally calculated by means of X-ray photoelectron spectroscopy analysis (XPS). Out of 16 samples, the one with the highest yield was the coground sample containing vincamine and citric acid in a 1:2 molar ratio, treated for 60 min in the presence of NaCMC. Under the above conditions the salification reaction was completed highlighting the importance of a proper selection of process and formulation variables of the mechanochemical salification, and emphasizing the crucial role of the solid solvent in facilitating the salification. The second step of the research encompassed the characterization of the citrate salt obtained by solid excipient assisted mechanochemical salification (SEAMS) in comparison with the vincamine citrate obtained by classical synthetic route. The samples were characterized by, besides XPS, high resolution transmission electron microscopy (HRTEM), X-ray powder diffraction (XRPD), in vitro solubilization kinetics and in vivo oral pilot study in rats. Finally, in order to monitor over time possible disproportionation phenomena, stability studies have been performed by repeating XPS analysis after 8 months. As expected, the the SEAMS-vincamine salt consisted of particles both crystalline and amorphous. The solubilization kinetics was superior to the corresponding salt probably thanks to the favorable presence of the hydrophilic excipient although the two salts were bioequivalent in rats after oral administration. Furthermore, no evidence of disporportionation phenomena in the SEAMS-vincamine salt was found after storage. In conclusion, in the case of forming salts of poorly soluble drugs, the SEAMS process may be an interesting alternative to both classical synthetic routes, eliminating the need for solvent removal, and simple neat mechanochemical salification, overcoming the problem of limited process yield.


Asunto(s)
Ácido Cítrico/química , Vincamina/química , Animales , Disponibilidad Biológica , Química Farmacéutica/métodos , Estabilidad de Medicamentos , Excipientes/química , Cinética , Tamaño de la Partícula , Espectroscopía de Fotoelectrones/métodos , Proyectos Piloto , Ratas , Ratas Sprague-Dawley , Sales (Química)/química , Solubilidad , Solventes/química , Vincamina/administración & dosificación , Vincamina/sangre , Vincamina/farmacocinética , Difracción de Rayos X/métodos
10.
Eur J Pharm Sci ; 189: 106559, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37544334

RESUMEN

In order to solubilize poorly soluble active pharmaceutical ingredients, various strategies have been implemented over the years, including the use of nanocarriers, such as cyclodextrins and liposomes. However, improving a drug's apparent solubility does not always translate to enhanced bioavailability. This work aimed to investigate to which extent complexation with cyclodextrins and incorporation into liposomes influence drug in vitro permeability and to find a mechanistic description of the permeation process. For this purpose, we investigated hydroxypropyl-ß-cyclodextrin (HP-ß-CD) and phosphatidylcholine liposomes formulations of three chemically diverse compounds (atenolol, ketoprofen and hydrocortisone). We studied drug diffusion of the formulations by UV-localized spectroscopy and advanced data fitting to extract parameters such as diffusivity and bound-/free drug fractions. We then correlated this information with in vitro drug permeability obtained with the novel PermeaPadⓇ barrier. The results showed that increased concentration of HP-ß-CD leads to increased solubilization of the poorly soluble unionized ketoprofen, as well as hydrocortisone. However, this net increment of apparent solubility was not proportional to the increased flux measured. On the other hand, normalising the flux over the empirical free drug concentration, i.e., the free fraction, gave a meaningful absolute permeability coefficient. The results achieved for the liposomal formulation were consistent with the finding on cyclodextrins. In conclusion, we proved the adequacy and usefulness of our method for calculating free drug fractions in the examined enabling formulations, supporting the validity of the established drug diffusion/permeation theory that the unbounded drug fraction is the main driver for drug permeation across a membrane.


Asunto(s)
Ciclodextrinas , Cetoprofeno , beta-Ciclodextrinas , Ciclodextrinas/química , Liposomas/química , 2-Hidroxipropil-beta-Ciclodextrina , beta-Ciclodextrinas/química , Cetoprofeno/química , Hidrocortisona/química , Permeabilidad
11.
Environ Pollut ; 328: 121654, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37080514

RESUMEN

There is an increase of application of Nickel in the form of nanoparticles (NiNPs) in several fields including modern metallurgy, bioengineering, and medicine. Such growth of the areas of application is actually accompanied with an increase of exposure to Nickel, thus an intensification of the negative effects, the most frequent being the allergic contact dermatitis. Indeed, due to their smaller size, and therefore their higher surface area, NiNPs can release more Ni ions compared to bulk material, that can penetrate and permeate through the skin. To reduce the Ni cutaneous penetration, barrier creams (BC) are applied on the skin surface. There is little information, however, on the efficiency of such commercial protective creams on decreasing Ni cutaneous penetration. For this reason, the objective of the current study was to investigate the protective role of one commercially available formulation for Ni (Nik-L-Block™ containing a chelating agent) and one moisturizing cream (Ceramol 311 basic cream without chelating agent), following exposure to NiNPs, using in vitro Franz cells, as well as the cytotoxicity of NiNPs in primary human dermal fibroblasts was studied. Our results demonstrated that although both tested formulations can decrease Ni accumulation in the skin (4.13 ± 1.74 µg/cm2 for Nik-L-Block™ and 7.14 ± 1.46 µg/cm2 for Ceramol 311 basic cream); there are significant differences between the two creams (p = 0.004). Based on the experimental evidence, we therefore conclude that the composition of such formulations has an imperative role for dermal uptake of Ni. Finally, NiNPs showed no cytotoxic effect on cultured human dermal fibroblasts after 24 and 72 h.


Asunto(s)
Nanopartículas , Níquel , Humanos , Níquel/toxicidad , Piel , Nanopartículas/toxicidad , Quelantes
12.
Int J Pharm ; 644: 123315, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37579827

RESUMEN

In this paper we report a successful example of combining drugs through cocrystallization. Specifically, the novel solid is formed by two anthelminthic drugs, namely praziquantel (PZQ) and niclosamide (NCM) in a 1:3 molar ratio, and it can be obtained through a sustainable one-step mechanochemical process in the presence of micromolar amounts of methanol. The novel solid phase crystallizes in the monoclinic space group of P21/c, showing one PZQ and three NCM molecules linked through homo- and heteromolecular hydrogen bonds in the asymmetric unit, as also attested by SSNMR and FT-IR results. A plate-like habitus is evident from scanning electron microscopy analysis with a melting point of 202.89 °C, which is intermediate to those of the parent compounds. The supramolecular interactions confer favorable properties to the cocrystal, preventing NCM transformation into the insoluble monohydrate both in the solid state and in aqueous solution. Remarkably, the PZQ - NCM cocrystal exhibits higher anthelmintic activity against in vitro S. mansoni models than corresponding physical mixture of the APIs. Finally, due to in vitro promising results, in vivo preliminary tests on mice were also performed through the administration of minicapsules size M.


Asunto(s)
Antihelmínticos , Praziquantel , Animales , Ratones , Praziquantel/farmacología , Praziquantel/química , Niclosamida/farmacología , Antiparasitarios , Preparaciones Farmacéuticas , Espectroscopía Infrarroja por Transformada de Fourier , Antihelmínticos/farmacología , Antihelmínticos/química , Schistosoma mansoni
13.
Drug Deliv Transl Res ; 12(8): 1843-1858, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34988827

RESUMEN

In the last decades, Green Chemistry has been gaining widespread attention within the pharmaceutical field. It is thus very important to bring more sustainable approaches into the design and manufacture of effective oral drug delivery systems. This review focuses on spray congealing and mechanochemical activation, two technologies endorsing different principles of green chemistry, and at the same time, addressing some of the challenges related to the transformation of poorly water-soluble drugs in highly bioavailable solid dosage forms. We therefore present an overview of the basic principles, equipment, and application of these particle-engineering technologies, with specific attention to case studies carried out by the groups working in Italian Universities.


Asunto(s)
Sistemas de Liberación de Medicamentos , Tecnología Farmacéutica , Preparaciones Farmacéuticas , Solubilidad
14.
Int J Pharm ; 628: 122266, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36228883

RESUMEN

Human skin remains the most reliable model for studying the transdermal permeation of active compounds. Due to the limited source, porcine skin has been used extensively for performing penetration tests. Performing penetration studies by using human and animal skin, however, would also involve a series of ethical issues and restrictions. For these reasons, new biomimetic artificial barriers are being developed as possible alternatives for transdermal testing. If appropriately optimized, such products can be cost-effective, easily standardized across laboratories, precisely controlled in specific experimental conditions, or even present additional properties compared to the human and animal skin models such as negligible variability between replicates. In this current work we use the skin mimicking barrier (SMB) for drug permeability tests. The aim was to evaluate the suitability of the new barrier for studying the percutaneous absorption of the lipophilic extract of the plant Zingiber officinale Roscoe in vitro and compare its permeability ability with the artificial membrane Permeapad® and porcine skin. Our results showed that the permeability values obtained through the SMB are comparable are comparable to those obtained by using the porcine skin, suggesting that the new barrier may be an acceptable in vitro model for conducting percutaneous penetration experiments.


Asunto(s)
Biomimética , Absorción Cutánea , Animales , Porcinos , Humanos , Administración Cutánea , Piel/metabolismo , Permeabilidad
15.
Pharm Res ; 28(8): 1870-83, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21424156

RESUMEN

PURPOSE: Enhancing oral bioavailability of vinpocetine by forming its amorphous citrate salt through a solvent-free mechanochemical process, in presence of micronised crospovidone and citric acid. METHODS: The impact of formulation and process variables (amount of polymer and citric acid, and milling time) on vinpocetine solubilization kinetics from the coground was studied through an experimental design. The best performing samples were characterized by employing a multidisciplinary approach, involving Differential scanning calorimetry, X-ray diffraction, Raman imaging/spectroscopy, X-ray photoelectron spectroscopy, solid-state NMR spectroscopy, porosimetry and in vivo studies on rats to ascertain the salt formation, their solid-state characteristics and oral bioavailability in comparison to vinpocetine citrate salt (Oxopocetine(®)). RESULTS: The analyses attested that the mechanochemical process is a viable way to produce in absence of solvents vinpocetine citrate salt in an amorphous state. CONCLUSION: From the in vivo studies on rats the obtained salt was four times more bioavailable than its physical mixture and bioequivalent to the commercial salt produced by conventional synthetic process implying the use of solvent.


Asunto(s)
Alcaloides de la Vinca/química , Alcaloides de la Vinca/farmacocinética , Administración Oral , Animales , Disponibilidad Biológica , Rastreo Diferencial de Calorimetría/métodos , Química Farmacéutica/métodos , Ácido Cítrico/química , Espectroscopía de Resonancia Magnética/métodos , Tamaño de la Partícula , Espectroscopía de Fotoelectrones/métodos , Povidona/química , Ratas , Ratas Sprague-Dawley , Solubilidad , Espectrometría Raman/métodos , Alcaloides de la Vinca/administración & dosificación , Difracción de Rayos X/métodos
16.
Chem Sci ; 12(9): 3264-3269, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34164095

RESUMEN

We demonstrate that liquid additives can exert inhibitive or prohibitive effects on the mechanochemical formation of multi-component molecular crystals, and report that certain additives unexpectedly prompt the dismantling of such solids into physical mixtures of their constituents. Computational methods were employed in an attempt to identify possible reasons for these previously unrecognised effects of liquid additives on mechanochemical transformations.

17.
Pharmaceutics ; 13(10)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34683899

RESUMEN

Two new solvates of the widely used anthelminthic Praziquantel (PZQ) were obtained through mechanochemical screening with different liquid additives. Specifically, 2-pyrrolidone and acetic acid gave solvates with 1:1 stoichiometry (PZQ-AA and PZQ-2P, respectively). A wide-ranging characterization of the new solid forms was carried out by means of powder X-ray diffraction, differential scanning calorimetry, FT-IR, solid-state NMR and biopharmaceutical analyses (solubility and intrinsic dissolution studies). Besides, the crystal structures of the two new solvates were solved from their Synchrotron-PXRD pattern: the solvates are isostructural, with equivalent triclinic packing. In both structures acetic acid and 2-pyrrolidone showed a strong interaction with the PZQ molecule via hydrogen bond. Even though previous studies have shown that PZQ is conformationally flexible, the same syn conformation as the PZQ Form A of the C=O groups of the piperazinone-cyclohexylcarbonyl segment is involved in these two new solid forms. In terms of biopharmaceutical properties, PZQ-AA and PZQ-2P exhibited water solubility and intrinsic dissolution rate much greater than those of anhydrous Form A.

18.
Pharmaceutics ; 13(12)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34959330

RESUMEN

A redox-responsive nanocarrier is a promising strategy for the intracellular drug release because it protects the payload, prevents its undesirable leakage during extracellular transport, and favors site-specific drug delivery. In this study, we developed a novel redox responsive core-shell structure nanohydrogel prepared by a water in oil nanoemulsion method using two biocompatible synthetic polymers: vinyl sulfonated poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate)-polyethylene glycol-poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate) triblock copolymer, and thiolated hyaluronic acid. The influence on the nanohydrogel particle size and distribution of formulation parameters was investigated by a three-level full factorial design to optimize the preparation conditions. The surface and core-shell morphology of the nanohydrogel were observed by scanning electron microscope, transmission electron microscopy, and further confirmed by Fourier transform infrared spectroscopy and Raman spectroscopy from the standpoint of chemical composition. The redox-responsive biodegradability of the nanohydrogel in reducing environments was determined using glutathione as reducing agent. A nanohydrogel with particle size around 250 nm and polydispersity index around 0.1 is characterized by a thermosensitive shell which jellifies at body temperature and crosslinks at the interface of a redox-responsive hyaluronic acid core via the Michael addition reaction. The nanohydrogel showed good encapsulation efficiency for model macromolecules of different molecular weight (93% for cytochrome C, 47% for horseradish peroxidase, and 90% for bovine serum albumin), capacity to retain the peroxidase-like enzymatic activity (around 90%) of cytochrome C and horseradish peroxidase, and specific redox-responsive release behavior. Additionally, the nanohydrogel exhibited excellent cytocompatibility and internalization efficiency into macrophages. Therefore, the developed core-shell structure nanohydrogel can be considered a promising tool for the potential intracellular delivery of different pharmaceutical applications, including for cancer therapy.

19.
Mol Pharm ; 7(5): 1488-97, 2010 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-20681582

RESUMEN

The importance of studying oral drug absorption is well recognized by both research facilities/institutions and the pharmaceutical industry. The use of mathematical models can represent a very profitable and indispensable tool to understand oral drug absorption. Indeed, mathematical models can verify the correctness of the mechanisms proposed to describe drug release, absorption, distribution and elimination thus reducing the number of expensive and time-consuming experiments. In this paper we develop a mathematical approach able to model both the polymeric particle mediated delivery and the gastrointestinal absorption-metabolism-excretion (ADME) of a given drug. As a model drug a poorly water-soluble drug (vinpocetine) in both the amorphous and nanocrystalline state is considered. The delivery system is obtained by drug cogrinding with a polymer (cross-linked polyvinilpyrrolidone). As the proposed mathematical model can properly fit the in vivo data on the basis of information obtained in vitro, it represents a powerful theoretical tool connecting in vitro and in vivo behavior.


Asunto(s)
Absorción Intestinal , Modelos Biológicos , Farmacocinética , Administración Oral , Adulto , Química Farmacéutica , Cristalización , Preparaciones de Acción Retardada , Sistemas de Liberación de Medicamentos , Humanos , Masculino , Conceptos Matemáticos , Persona de Mediana Edad , Nanopartículas/administración & dosificación , Nanopartículas/química , Solubilidad , Alcaloides de la Vinca/administración & dosificación , Alcaloides de la Vinca/química , Alcaloides de la Vinca/farmacocinética , Agua
20.
Food Res Int ; 127: 108730, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31882111

RESUMEN

Curcuma longa L. is used as food supplement to prevent diseases, although limited studies have been performed on healthy subjects up to now. In the present work, an untargeted UPLC-MS metabolomics approach was applied to study the changes of 24-hours urinary composition on healthy volunteers due to a 28-days daily consumption of a dried C. longa extract containing a standardized amount of curcuminoids. Changes in the excretion of different metabolites were observed after supplementation. Curcumin and two metabolic derivatives (hexahydrocurcumin and dihydrocurcumin) were detected in urine, indicating the absorption of the main curcuminoid from the extract and its further metabolism by liver and gut microbiota. For the first time ar-turmerone, the main apolar constituent of curcuma, was detected in urine in intact form, and its presence was confirmed by a targeted GC-MS analysis. The increase of tetranor-PGJM and tetranor-PGDM, two prostaglandin-D2 metabolites, was observed, being related to the anti-inflammatory effect exerted by curcuma. The variation of the amounts of HPAG, PAG, proline-betaine and hydroxyphenyllactic acid indicate that the supplementation induced changes to the activity of gut microbiota. Finally, the reduced excretion of niacin metabolites (nicotinuric acid, trigonelline and 2PY) and medium- and short-chain acylcarnitines suggests that curcuma could induce the mitochondrial ß-oxidation of fatty acids for energy production in healthy subjects. Overall, the results indicate that a prolonged daily consumption of a dried curcuma extract exerts multiple effects on healthy subjects, furthermore they show the opportunity offered by untargeted metabolomics for the study of the bioactivity of natural extracts in healthy human volunteers.


Asunto(s)
Cromatografía Liquida/métodos , Curcuma/metabolismo , Espectrometría de Masas/métodos , Extractos Vegetales/metabolismo , Urinálisis/métodos , Adulto , Biomarcadores/orina , Femenino , Humanos , Cetonas/orina , Masculino , Persona de Mediana Edad , Proyectos Piloto , Prostaglandina D2/metabolismo , Prostaglandina D2/orina , Sesquiterpenos/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA