Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Cell ; 45(2): 222-32, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22284678

RESUMEN

Members of the ß-karyopherin family mediate nuclear import of ribosomal proteins and export of ribosomal subunits, both required for ribosome biogenesis. We report that transcription of the ß-karyopherin genes importin 7 (IPO7) and exportin 1 (XPO1), and several additional nuclear import receptors, is regulated positively by c-Myc and negatively by p53. Partial IPO7 depletion triggers p53 activation and p53-dependent growth arrest. Activation of p53 by IPO7 knockdown has distinct features of ribosomal biogenesis stress, with increased binding of Mdm2 to ribosomal proteins L5 and L11 (RPL5 and RPL11). Furthermore, p53 activation is dependent on RPL5 and RPL11. Of note, IPO7 and XPO1 are frequently overexpressed in cancer. Altogether, we propose that c-Myc and p53 counter each other in the regulation of elements within the nuclear transport machinery, thereby exerting opposing effects on the rate of ribosome biogenesis. Perturbation of this balance may play a significant role in promoting cancer.


Asunto(s)
Carioferinas/fisiología , Proteínas Proto-Oncogénicas c-myc/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/fisiología , Transporte Activo de Núcleo Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Ribosómicas/metabolismo , Estrés Fisiológico , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína Exportina 1
2.
Proc Natl Acad Sci U S A ; 114(4): E496-E505, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-27994142

RESUMEN

The microRNA miR-504 targets TP53 mRNA encoding the p53 tumor suppressor. miR-504 resides within the fibroblast growth factor 13 (FGF13) gene, which is overexpressed in various cancers. We report that the FGF13 locus, comprising FGF13 and miR-504, is transcriptionally repressed by p53, defining an additional negative feedback loop in the p53 network. Furthermore, we show that FGF13 1A is a nucleolar protein that represses ribosomal RNA transcription and attenuates protein synthesis. Importantly, in cancer cells expressing high levels of FGF13, the depletion of FGF13 elicits increased proteostasis stress, associated with the accumulation of reactive oxygen species and apoptosis. Notably, stepwise neoplastic transformation is accompanied by a gradual increase in FGF13 expression and increased dependence on FGF13 for survival ("nononcogene addiction"). Moreover, FGF13 overexpression enables cells to cope more effectively with the stress elicited by oncogenic Ras protein. We propose that, in cells in which activated oncogenes drive excessive protein synthesis, FGF13 may favor survival by maintaining translation rates at a level compatible with the protein quality-control capacity of the cell. Thus, FGF13 may serve as an enabler, allowing cancer cells to evade proteostasis stress triggered by oncogene activation.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Neoplasias/metabolismo , Ribosomas/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Factores de Crecimiento de Fibroblastos/genética , Humanos , MicroARNs/genética , Neoplasias/genética , Proteína p53 Supresora de Tumor/genética
3.
Semin Cancer Biol ; 37-38: 36-50, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26721423

RESUMEN

The nucleolus is the most prominent nuclear substructure assigned to produce ribosomes; molecular machines that are responsible for carrying out protein synthesis. To meet the increased demand for proteins during cell growth and proliferation the cell must increase protein synthetic capacity by upregulating ribosome biogenesis. While larger nucleolar size and number have been recognized as hallmark features of many tumor types, recent evidence has suggested that, in addition to overproduction of ribosomes, decreased ribosome biogenesis as well as qualitative changes in this process could also contribute to tumor initiation and cancer progression. Furthermore, the nucleolus has become the focus of intense attention for its involvement in processes that are clearly unrelated to ribosome biogenesis such as sensing and responding to endogenous and exogenous stressors, maintenance of genome stability, regulation of cell-cycle progression, cellular senescence, telomere function, chromatin structure, establishment of nuclear architecture, global regulation of gene expression and biogenesis of multiple ribonucleoprotein particles. The fact that dysregulation of many of these fundamental cellular processes may contribute to the malignant phenotype suggests that normal functioning of the nucleolus safeguards against the development of cancer and indicates its potential as a therapeutic approach. Here we review the recent advances made toward understanding these newly-recognized nucleolar functions and their roles in normal and cancer cells, and discuss possible future research directions.


Asunto(s)
Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Neoplasias/patología , Nucléolo Celular/patología , Segregación Cromosómica , Daño del ADN , ADN Ribosómico , Epigénesis Genética , Inestabilidad Genómica , Humanos , Mitosis , ARN Ribosómico/metabolismo , Ribosomas/metabolismo , Telómero
4.
Biochim Biophys Acta ; 1842(6): 817-30, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24514102

RESUMEN

Errors in ribosome biogenesis can result in quantitative or qualitative defects in protein synthesis and consequently lead to improper execution of the genetic program and the development of specific diseases. Evidence has accumulated over the last decade suggesting that perturbation of ribosome biogenesis triggers a p53-activating checkpoint signaling pathway, often referred to as the ribosome biogenesis stress checkpoint pathway. Although it was originally suggested that p53 has a prominent role in preventing diseases by monitoring the fidelity of ribosome biogenesis, recent work has demonstrated that p53 activation upon impairment of ribosome biogenesis also mediates pathological manifestations in humans. Perturbations of ribosome biogenesis can trigger a p53-dependent checkpoint signaling pathway independent of DNA damage and the tumor suppressor ARF through inhibitory interactions of specific ribosomal components with the p53 negative regulator, Mdm2. Here we review the recent advances made toward understanding of this newly-recognized checkpoint signaling pathway, its role in health and disease, and discuss possible future directions in this exciting research field. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.


Asunto(s)
Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-mdm2/genética , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Daño del ADN/genética , Humanos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Transducción de Señal , Activación Transcripcional , Proteína p53 Supresora de Tumor/genética
5.
Proc Natl Acad Sci U S A ; 109(50): 20467-72, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23169665

RESUMEN

Impairment of ribosomal biogenesis can activate the p53 protein independently of DNA damage. The ability of ribosomal proteins L5, L11, L23, L26, or S7 to bind Mdm2 and inhibit its ubiquitin ligase activity has been suggested as a critical step in p53 activation under these conditions. Here, we report that L5 and L11 are particularly important for this response. Whereas several other newly synthesized ribosomal proteins are degraded by proteasomes upon inhibition of Pol I activity by actinomycin D, L5 and L11 accumulate in the ribosome-free fraction where they bind to Mdm2. This selective accumulation of free L5 and L11 is due to their mutual protection from proteasomal degradation. Furthermore, the endogenous, newly synthesized L5 and L11 continue to be imported into nucleoli even after nucleolar disruption and colocalize with Mdm2, p53, and promyelocytic leukemia protein. This suggests that the disrupted nucleoli may provide a platform for L5- and L11-dependent p53 activation, implying a role for the nucleolus in p53 activation by ribosomal biogenesis stress. These findings may have important implications with respect to understanding the pathogenesis of diseases caused by impaired ribosome biogenesis.


Asunto(s)
Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Transporte Activo de Núcleo Celular , Animales , Secuencia de Bases , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Dactinomicina/farmacología , Humanos , Ratones , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína de la Leucemia Promielocítica , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/genética , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Arriba
6.
Int Orthop ; 39(1): 161-72, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25300398

RESUMEN

PURPOSE: Iron overload accelerates bone loss in mice lacking the bone morphogenetic protein 6 (Bmp6) gene, which is the key endogenous regulator of hepcidin, iron homeostasis gene. We investigated involvement of other BMPs in preventing haemochromatosis and subsequent osteopenia in Bmp6-/- mice. METHODS: Iron-treated wild-type (WT) and Bmp6-/- mice were analysed for hepcidin messenger RNA (mRNA) and tissue and blood BMP levels by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR), immunohistochemistry, Western blot, enzyme-linked immunosorbent assay (ELISA) and proximity extension assay. BMPs labeled with technetium-99m were used in pharmacokinetic studies. RESULTS: In WT mice, 4 h following iron challenge, liver Bmp6 and hepcidin expression were increased, while expression of other Bmps was not affected. In parallel, we provided the first evidence that BMP6 circulates in WT mice and that iron increased the BMP6 serum level and the specific liver uptake of (99m)Tc-BMP6. In Bmp6-/- mice, iron challenge led to blunted activation of liver Smad signaling and hepcidin expression with a delay of 24 h, associated with increased Bmp5 and Bmp7 expression and increased Bmp2, 4, 5 and 9 expression in the duodenum. Liver Bmp7 expression and increased circulating BMP9 eventually contributed to the late hepcidin response. This was further supported by exogenous BMP7 therapy resulting in an effective hepcidin expression followed by a rapid normalisation of plasma iron values and restored osteopenia in Bmp6-/- mice. CONCLUSION: In Bmp6-/- mice, iron activated endogenous compensatory mechanisms of other BMPs that were not sufficient for preventing hemochromatosis and bone loss. Administration of exogenous BMP7 was effective in correcting the plasma iron level and bone loss, indicating that BMP6 is an essential but not exclusive in vivo regulator of iron homeostasis.


Asunto(s)
Enfermedades Óseas Metabólicas/tratamiento farmacológico , Proteínas Morfogenéticas Óseas/metabolismo , Sobrecarga de Hierro/tratamiento farmacológico , Animales , Western Blotting , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/farmacología , Ensayo de Inmunoadsorción Enzimática , Femenino , Hepcidinas/metabolismo , Homeostasis/fisiología , Inmunohistoquímica , Hierro/metabolismo , Hígado/metabolismo , Masculino , Espectrometría de Masas , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
7.
Curr Opin Cell Biol ; 17(2): 107-11, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15780584

RESUMEN

Spatial and temporal separation of signal transduction pathways often determines the specificity in cellular responses. Recent advances have improved our understanding of how growth factor signalling is influenced by the formation of molecular complexes (signalosomes) in distinct cellular compartments. There has also been new insight into the mechanisms that determine the signalling competence of these complexes and their role in receptor endocytosis, retrograde trafficking in neurons and restricted protein biosynthesis, and many examples have been found where signalosome deregulation leads to disease.


Asunto(s)
Compartimento Celular/fisiología , Sustancias de Crecimiento/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Receptores de Factores de Crecimiento/metabolismo , Transducción de Señal/fisiología , Animales , Transformación Celular Neoplásica/metabolismo , Endocitosis/fisiología , Humanos , Sustancias Macromoleculares/metabolismo , Transporte de Proteínas/fisiología
8.
Cell Death Differ ; 29(3): 687-696, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34611297

RESUMEN

Ribosome biogenesis is an essential, energy demanding process whose deregulation has been implicated in cancer, aging, and neurodegeneration. Ribosome biogenesis is therefore under surveillance of pathways including the p53 tumor suppressor. Here, we first performed a high-content siRNA-based screen of 175 human ribosome biogenesis factors, searching for impact on p53. Knock-down of 4 and 35 of these proteins in U2OS cells reduced and increased p53 abundance, respectively, including p53 accumulation after depletion of BYSL, DDX56, and WDR75, the effects of which were validated in several models. Using complementary approaches including subcellular fractionation, we demonstrate that endogenous human WDR75 is a nucleolar protein and immunofluorescence analysis of ectopic GFP-tagged WDR75 shows relocation to nucleolar caps under chemically induced nucleolar stress, along with several canonical nucleolar proteins. Mechanistically, we show that WDR75 is required for pre-rRNA transcription, through supporting the maintenance of physiological levels of RPA194, a key subunit of the RNA polymerase I. Furthermore, WDR75 depletion activated the RPL5/RPL11-dependent p53 stabilization checkpoint, ultimately leading to impaired proliferation and cellular senescence. These findings reveal a crucial positive role of WDR75 in ribosome biogenesis and provide a resource of human ribosomal factors the malfunction of which affects p53.


Asunto(s)
Proteínas Ribosómicas , Proteína p53 Supresora de Tumor/metabolismo , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , ARN Helicasas DEAD-box/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Precursores del ARN/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/genética
9.
Hum Mol Genet ; 18(15): 2813-24, 2009 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-19423553

RESUMEN

The molecular mechanisms that control reproductive aging and menopausal age in females are poorly understood. Here, we provide genetic evidence that 3-phosphoinositide-dependent protein kinase-1 (PDK1) signaling in oocytes preserves reproductive lifespan by maintaining the survival of ovarian primordial follicles. In mice lacking the PDK1-encoding gene Pdk1 in oocytes, the majority of primordial follicles are depleted around the onset of sexual maturity, causing premature ovarian failure (POF) during early adulthood. We further showed that suppressed PDK1-Akt-p70 S6 kinase 1 (S6K1)-ribosomal protein S6 (rpS6) signaling in oocytes appears to be responsible for the loss of primordial follicles, and mice lacking the Rps6 gene in oocytes show POF similar to that in Pdk1-deficient mice. In combination with our earlier finding that phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in oocytes suppresses follicular activation, we have now pinpointed the molecular network involving phosphatidylinositol 3 kinase (PI3K)/PTEN-PDK1 signaling in oocytes that controls the survival, loss and activation of primordial follicles, which together determine reproductive aging and the length of reproductive life in females. Underactivation or overactivation of this signaling pathway in oocytes is shown to cause pathological conditions in the ovary, including POF and infertility.


Asunto(s)
Envejecimiento/metabolismo , Oocitos/metabolismo , Folículo Ovárico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Animales , Femenino , Humanos , Esperanza de Vida , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oocitos/citología , Oocitos/crecimiento & desarrollo , Folículo Ovárico/citología , Folículo Ovárico/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/genética , Proteína S6 Ribosómica/genética , Proteína S6 Ribosómica/metabolismo , Proteínas Quinasas S6 Ribosómicas/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo
10.
Trends Cancer ; 7(1): 57-76, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32948502

RESUMEN

Ribosome biogenesis (RiBi) is one of the most complex and energy demanding processes in human cells, critical for cell growth and proliferation. Strong causal links between inherited and acquired impairment in RiBi with cancer pathogenesis are emerging, pointing to RiBi as an attractive therapeutic target for cancer. Here, we will highlight new knowledge about causes of excessive or impaired RiBi and the impact of these changes on protein synthesis. We will also discuss how new knowledge about secondary consequences of dysregulated RiBi and protein synthesis, including proteotoxic stress, metabolic alterations, adaptive transcriptional and translational programs, and the impaired ribosome biogenesis checkpoint (IRBC) provide a foundation for the development of new anticancer therapies.


Asunto(s)
Benzotiazoles/farmacología , Carcinogénesis/efectos de los fármacos , Naftiridinas/farmacología , Neoplasias/tratamiento farmacológico , ARN Polimerasa I/antagonistas & inhibidores , Ribosomas/metabolismo , Benzotiazoles/uso terapéutico , Carcinogénesis/genética , Carcinogénesis/patología , Reparación del ADN/genética , Humanos , Mutación , Naftiridinas/uso terapéutico , Neoplasias/genética , Neoplasias/patología , Biogénesis de Organelos , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , ARN Polimerasa I/metabolismo , Proteínas Ribosómicas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Mutaciones Letales Sintéticas , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación/efectos de los fármacos
11.
Oncogene ; 39(17): 3443-3457, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32108164

RESUMEN

Perturbations in ribosome biogenesis have been associated with cancer. Such aberrations activate p53 through the RPL5/RPL11/5S rRNA complex-mediated inhibition of HDM2. Studies using animal models have suggested that this signaling pathway might constitute an important anticancer barrier. To gain a deeper insight into this issue in humans, here we analyze somatic mutations in RPL5 and RPL11 coding regions, reported in The Cancer Genome Atlas and International Cancer Genome Consortium databases. Using a combined computational and statistical approach, complemented by a range of biochemical and functional analyses in human cancer cell models, we demonstrate the existence of several mechanisms by which RPL5 mutations may impair wild-type p53 upregulation and ribosome biogenesis. Unexpectedly, the same approach provides only modest evidence for a similar role of RPL11, suggesting that RPL5 represents a preferred target during human tumorigenesis in cancers with wild-type p53. Furthermore, we find that several functional cancer-associated RPL5 somatic mutations occur as rare germline variants in general population. Our results shed light on the so-far enigmatic role of cancer-associated mutations in genes encoding ribosomal proteins, with implications for our understanding of the tumor suppressive role of the RPL5/RPL11/5S rRNA complex in human malignancies.


Asunto(s)
Mutación , Neoplasias , Proteínas Proto-Oncogénicas c-mdm2 , Proteínas Ribosómicas , Ribosomas , Proteína p53 Supresora de Tumor , Células A549 , Femenino , Humanos , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , ARN Ribosómico 5S/genética , ARN Ribosómico 5S/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
12.
Mol Cell Biol ; 26(23): 8880-91, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17000767

RESUMEN

Nascent ribosome biogenesis is required during cell growth. To gain insight into the importance of this process during mouse oogenesis and embryonic development, we deleted one allele of the ribosomal protein S6 gene in growing oocytes and generated S6-heterozygous embryos. Oogenesis and embryonic development until embryonic day 5.5 (E5.5) were normal. However, inhibition of entry into M phase of the cell cycle and apoptosis became evident post-E5.5 and led to perigastrulation lethality. Genetic inactivation of p53 bypassed this checkpoint and prolonged development until E12.5, when the embryos died, showing decreased expression of D-type cyclins, diminished fetal liver erythropoiesis, and placental defects. Thus, a p53-dependent checkpoint is activated during gastrulation in response to ribosome insufficiency to prevent improper execution of the developmental program.


Asunto(s)
Ciclo Celular , Gástrula/fisiología , Proteína S6 Ribosómica/genética , Proteína S6 Ribosómica/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Blastocisto/citología , Ciclo Celular/genética , Ciclo Celular/fisiología , Células Cultivadas , Femenino , Inmunohistoquímica , Ratones , Ratones Noqueados , Embarazo , Proteína p53 Supresora de Tumor/genética
13.
Nat Rev Cancer ; 18(1): 51-63, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29192214

RESUMEN

The ribosome is a complex molecular machine composed of numerous distinct proteins and nucleic acids and is responsible for protein synthesis in every living cell. Ribosome biogenesis is one of the most multifaceted and energy- demanding processes in biology, involving a large number of assembly and maturation factors, the functions of which are orchestrated by multiple cellular inputs, including mitogenic signals and nutrient availability. Although causal associations between inherited mutations affecting ribosome biogenesis and elevated cancer risk have been established over the past decade, mechanistic data have emerged suggesting a broader role for dysregulated ribosome biogenesis in the development and progression of most spontaneous cancers. In this Opinion article, we highlight the most recent findings that provide new insights into the molecular basis of ribosome biogenesis in cancer and offer our perspective on how these observations present opportunities for the design of new targeted cancer treatments.


Asunto(s)
Neoplasias/patología , Biosíntesis de Proteínas/fisiología , Ribosomas/fisiología , Animales , Proliferación Celular/fisiología , Humanos , Neoplasias/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Transducción de Señal/fisiología
14.
Nat Rev Cancer ; 18(2): 134, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29368746

RESUMEN

This corrects the article DOI: 10.1038/nrc.2017.104.

15.
Oncogene ; 37(18): 2351-2366, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29429989

RESUMEN

The nucleolus is the major site for synthesis of ribosomes, complex molecular machines that are responsible for protein synthesis. A wealth of research over the past 20 years has clearly indicated that both quantitative and qualitative alterations in ribosome biogenesis can drive the malignant phenotype via dysregulation of protein synthesis. However, numerous recent proteomic, genomic, and functional studies have implicated the nucleolus in the regulation of processes that are unrelated to ribosome biogenesis, including DNA-damage response, maintenance of genome stability and its spatial organization, epigenetic regulation, cell-cycle control, stress responses, senescence, global gene expression, as well as assembly or maturation of various ribonucleoprotein particles. In this review, the focus will be on features of rDNA genes, which make them highly vulnerable to DNA damage and intra- and interchromosomal recombination as well as built-in mechanisms that prevent and repair rDNA damage, and how dysregulation of this interplay affects genome-wide DNA stability, gene expression and the balance between euchromatin and heterochromatin. We will also present the most recent insights into how malfunction of these cellular processes may be a central driving force of human malignancies, and propose a promising new therapeutic approach for the treatment of cancer.


Asunto(s)
Nucléolo Celular/fisiología , Inestabilidad Genómica/fisiología , Neoplasias/patología , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Humanos
16.
FEBS Lett ; 588(16): 2571-9, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-24747423

RESUMEN

Cell proliferation and cell growth are two tightly linked processes, as the proliferation program cannot be executed without proper accumulation of cell mass, otherwise endangering the fate of the two daughter cells. It is therefore not surprising that ribosome biogenesis, a key element in cell growth, is regulated by many cell cycle regulators. This regulation is exerted transcriptionally and post-transcriptionally, in conjunction with numerous intrinsic and extrinsic signals. Those signals eventually converge at the nucleolus, the cellular compartment that is not only responsible for executing the ribosome biogenesis program, but also serves as a regulatory hub, responsible for integrating and transmitting multiple stress signals to the omnipotent cell fate gatekeeper, p53. In this review we discuss when, how and why p53 is activated upon ribosomal biogenesis stress, and how perturbation of this critical regulatory interplay may impact human disease.


Asunto(s)
Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Nucléolo Celular/metabolismo , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología
18.
Nat Cell Biol ; 15(8): 967-77, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23851489

RESUMEN

The DNA damage response (DDR) pathway and ARF function as barriers to cancer development. Although commonly regarded as operating independently of each other, some studies proposed that ARF is positively regulated by the DDR. Contrary to either scenario, we found that in human oncogene-transformed and cancer cells, ATM suppressed ARF protein levels and activity in a transcription-independent manner. Mechanistically, ATM activated protein phosphatase 1, which antagonized Nek2-dependent phosphorylation of nucleophosmin (NPM), thereby liberating ARF from NPM and rendering it susceptible to degradation by the ULF E3-ubiquitin ligase. In human clinical samples, loss of ATM expression correlated with increased ARF levels and in xenograft and tissue culture models, inhibition of ATM stimulated the tumour-suppressive effects of ARF. These results provide insights into the functional interplay between the DDR and ARF anti-cancer barriers, with implications for tumorigenesis and treatment of advanced tumours.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Neoplasias/fisiopatología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína p14ARF Supresora de Tumor/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas Portadoras/metabolismo , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Masculino , Ratones , Quinasas Relacionadas con NIMA , Neoplasias/enzimología , Neoplasias/patología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Ribosomas/metabolismo , Transducción de Señal , Trasplante Heterólogo , Proteína p14ARF Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/metabolismo
19.
Respir Med ; 105 Suppl 1: S20-5, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22015081

RESUMEN

Natural killer T (NKT) cells, a unique subgroup of lymphocytes with features of both T and natural killer (NK) cells, represent a bridge between innate and adaptive immunity. They have the ability to either promote or suppress immune responses. With these immunoregulatory functions, NKT cells have emerged as an important subset of lymphocytes with a protective role in some disorders, such as infections, cancer, and possibly sarcoidosis, and a pathogenic role in others, such as asthma, chronic obstructive pulmonary disease and hypersensitivity pneumonitis. Immunotherapeutic interventions to modulate the immune response by targeting iNKT cell functions has become a challenging field and has shown promising results for the development of new therapies.


Asunto(s)
Asma/inmunología , Enfermedades Pulmonares Intersticiales/inmunología , Activación de Linfocitos/inmunología , Células T Asesinas Naturales/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Tuberculosis/inmunología , Inmunidad Adaptativa , Asma/fisiopatología , Femenino , Humanos , Inmunoterapia , Enfermedades Pulmonares Intersticiales/fisiopatología , Masculino , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Subgrupos de Linfocitos T/inmunología , Tuberculosis/fisiopatología
20.
J Cell Biol ; 195(7): 1123-40, 2011 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-22201124

RESUMEN

E-cadherin (CDH1) loss occurs frequently in carcinogenesis, contributing to invasion and metastasis. We observed that mouse and human epithelial cell lines overexpressing the replication licensing factor Cdc6 underwent phenotypic changes with mesenchymal features and loss of E-cadherin. Analysis in various types of human cancer revealed a strong correlation between increased Cdc6 expression and reduced E-cadherin levels. Prompted by these findings, we discovered that Cdc6 repressed CDH1 transcription by binding to the E-boxes of its promoter, leading to dissociation of the chromosomal insulator CTCF, displacement of the histone variant H2A.Z, and promoter heterochromatinization. Mutational analysis identified the Walker B motif and C-terminal region of Cdc6 as essential for CDH1 transcriptional suppression. Strikingly, CTCF displacement resulted in activation of adjacent origins of replication. These data demonstrate that Cdc6 acts as a molecular switch at the E-cadherin locus, linking transcriptional repression to activation of replication, and provide a telling example of how replication licensing factors could usurp alternative programs to fulfill distinct cellular functions.


Asunto(s)
Cadherinas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/genética , ADN/genética , Regulación hacia Abajo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transcripción Genética/genética , Secuencias de Aminoácidos , Animales , Antígenos CD , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/química , Línea Celular , Perros , Histonas/metabolismo , Humanos , Ratones , Ratones SCID , Proteínas Nucleares/química , Oncogenes/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA