Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 30(49): 495705, 2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31484168

RESUMEN

Electrical contacts and interconnections are critical components for all electronic devices. Bendable electrodes with enhanced electro-mechanical properties are highly desirable to develop innovative wearable electronic devices. Herein we report on a fabrication method for robust bendable coatings based on titanium nitride (TiN) thin films and silver nanowires (Ag NWs). TiN and TiN-AgNWs nanocomposites were deposited on polyethylene terephthalate (PET) substrates using a plasma enhanced pulsed laser deposition (PLD) technique. The resulting TiN coatings exhibit excellent adhesion to PET and their sheet resistance can be tuned using a dual frequency PLD process and further decreased by incorporating Ag NWs into the TiN layers. Sample sheet resistance was decreased down to values as low as [Formula: see text] corresponding to the formation of TiN-AgNWs nanocomposites. The electro-mechanical robustness of TiN based coatings were evaluated by four-probe resistance measurements in situ under cyclic bending tests. We show that the TiNAgNWs nanocomposites surpass both ITO and Ag NWs coatings in terms of mechanical robustness and electrical conductivity respectively. These nanocomposites withstand high strain fatigue loading up to ϵ = 2.6%, keeping R S below 5 Ω/□. The data demonstrates that the incorporation of Ag NWs in TiN coatings improve the mechanical robustness, limiting the crack growth and propagation, with low optical transmittance decrease (≈11%). These results indicate that Ag NWs based nanocomposites are attractive materials for flexible electronic devices.

2.
Mater Sci Eng C Mater Biol Appl ; 113: 111002, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32487408

RESUMEN

The present investigation reports the modification of Ti substrates by a plasma technique to enhance their physio-chemical properties as biocompatible substrates for the deposition of artificial membranes. For that purpose, nitrogen ions are implanted into Ti substrate using the plasma immersion ion implantation & deposition (PIII&D) technique in a capacitively coupled radio frequency plasma. The plasma was characterized using optical emission spectroscopy, together with radio frequency compensated Langmuir probe, while the ion current towards the substrate was measured during the implantation process using an opto-electronic device. X-ray photoelectron spectroscopy (XPS) was used for chemical analysis of the surface, confirming the presence of δ-TiN. The penetration depth of the nitrogen ions into the Ti substrate was measured using secondary ions mass spectroscopy (SIMS) while the morphological changes were observed using atomic force microscopy (AFM). A calorimetric assay was used to prove that the TiN samples maintain the biocompatibility of the untreated Ti surface with its native oxide layer. The ion implantation increases the load bearing ability of Ti surface by the formation of α-Ti(N) and δ-TiN phases on the sub-surface of Ti, and maintains the bio compatibility of Ti surface. After the plasma treatment a thin layer of chitosan (CH) was deposited in order to provide a moisturizing matrix for the artificial membrane of 1,2-dipalmitoyl-sn-3- phosphor glycerocholine (DPPC). The CH and subsequently the DPPC were deposited on the plasma deposited TiN substrate by using physical vapor deposition. The formation of artificial membranes was confirmed by AFM, measuring the topography at different temperatures and performing force curves.


Asunto(s)
Materiales Biocompatibles/química , Membranas Artificiales , Nitrógeno/química , Gases em Plasma/química , Titanio/química , 1,2-Dipalmitoilfosfatidilcolina/química , Animales , Materiales Biocompatibles/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Quitosano/química , Ratones , Propiedades de Superficie
3.
J Chem Phys ; 123(15): 154703, 2005 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16252965

RESUMEN

We report comprehensive atomic force microscopy (AFM) measurements at room temperature of the nanoscale topography and lateral friction on the surface of thin solid films of an intermediate-length normal alkane, dotriacontane (n-C32H66), adsorbed onto a SiO2 surface. Our topographic and frictional images, recorded simultaneously in the contact mode, reveal a multilayer structure in which one to two layers of molecules adsorb adjacent to the SiO2 surface oriented with their long axis parallel to the interface followed by partial layers of molecules oriented perpendicular to the surface. The thicknesses of the parallel and perpendicular layers that we measured with the AFM agree with those inferred from previous x-ray specular reflectivity measurements on similarly prepared samples. We also observe bulk dotriacontane particles and, in contrast with our previous measurements, are able to determine their location. Above a minimum size, the bulk particles are separated from islands of perpendicularly oriented molecules by regions of exposed parallel layers that most likely extend underneath the particles. We find that the lateral friction is sensitive to the molecular orientation in the underlying crystalline film and can be used effectively with topographic measurements to resolve uncertainties in the film structure. We measure the same lateral friction on top of the bulk particles as on the perpendicular layers, a value that is about 2.5 times smaller than on a parallel layer. Scans on top of parallel layers indicate a constant height but reveal domains having different sublevels of friction. We explain this by the domains having different azimuthal orientations of the molecules.

4.
Phys Rev Lett ; 92(4): 046103, 2004 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-14995389

RESUMEN

Molecular dynamics simulations of a tetracosane (n-C24H50) monolayer adsorbed on a graphite basal-plane surface show that there are diffusive motions associated with the creation and annihilation of gauche defects occurring on a time scale of approximately 0.1-4 ns. We present evidence that these relatively slow motions are observable by high-energy-resolution quasielastic neutron scattering (QNS) thus demonstrating QNS as a technique, complementary to nuclear magnetic resonance, for studying conformational dynamics on a nanosecond time scale in molecular monolayers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA