Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Hepatol ; 79(5): 1129-1138, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37459920

RESUMEN

BACKGROUND & AIMS: Chronic hepatitis B is a global public health problem, and coinfection with hepatitis delta virus (HDV) worsens disease outcome. Here, we describe a hepatitis B virus (HBV) surface antigen (HBsAg)-targeting monoclonal antibody (mAb) with the potential to treat chronic hepatitis B and chronic hepatitis D. METHODS: HBsAg-specific mAbs were isolated from memory B cells of HBV vaccinated individuals. In vitro neutralization was determined against HBV and HDV enveloped with HBsAg representing eight HBV genotypes. Human liver-chimeric mice were treated twice weekly with a candidate mAb starting 3 weeks post HBV inoculation (spreading phase) or during stable HBV or HBV/HDV coinfection (chronic phase). RESULTS: From a panel of human anti-HBs mAbs, VIR-3434 was selected and engineered for pre-clinical development. VIR-3434 targets a conserved, conformational epitope within the antigenic loop of HBsAg and neutralized HBV and HDV infection with higher potency than hepatitis B immunoglobulins in vitro. Neutralization was pan-genotypic against strains representative of HBV genotypes A-H. In the spreading phase of HBV infection in human liver-chimeric mice, a parental mAb of VIR-3434 (HBC34) prevented HBV dissemination and the increase in intrahepatic HBV RNA and covalently closed circular DNA. In the chronic phase of HBV infection or co-infection with HDV, HBC34 treatment decreased circulating HBsAg by >1 log and HDV RNA by >2 logs. CONCLUSIONS: The potently neutralizing anti-HBs mAb VIR-3434 reduces circulating HBsAg and HBV/HDV viremia in human liver-chimeric mice. VIR-3434 is currently in clinical development for treatment of patients with chronic hepatitis B or D. IMPACT AND IMPLICATIONS: Chronic infection with hepatitis B virus and co-infection with hepatitis D virus place approximately 290 million individuals worldwide at risk of severe liver disease and cancer. Available treatments result in low rates of functional cure or require lifelong therapy that does not eliminate the risk of liver disease. We isolated and characterized a potent human antibody that neutralizes hepatitis B and D viruses and reduces infection in a mouse model. This antibody could provide a new treatment for patients with chronic hepatitis B and D.

2.
Gut ; 71(2): 372-381, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33509930

RESUMEN

OBJECTIVE: Therapeutic strategies silencing and reducing the hepatitis B virus (HBV) reservoir, the covalently closed circular DNA (cccDNA), have the potential to cure chronic HBV infection. We aimed to investigate the impact of small interferring RNA (siRNA) targeting all HBV transcripts or pegylated interferon-α (peg-IFNα) on the viral regulatory HBx protein and the structural maintenance of chromosome 5/6 complex (SMC5/6), a host factor suppressing cccDNA transcription. In particular, we assessed whether interventions lowering HBV transcripts can achieve and maintain silencing of cccDNA transcription in vivo. DESIGN: HBV-infected human liver chimeric mice were treated with siRNA or peg-IFNα. Virological and host changes were analysed at the end of treatment and during the rebound phase by qualitative PCR, ELISA, immunoblotting and chromatin immunoprecipitation. RNA in situ hybridisation was combined with immunofluorescence to detect SMC6 and HBV RNAs at single cell level. The entry inhibitor myrcludex-B was used during the rebound phase to avoid new infection events. RESULTS: Both siRNA and peg-IFNα strongly reduced all HBV markers, including HBx levels, thus enabling the reappearance of SMC5/6 in hepatocytes that achieved HBV-RNA negativisation and SMC5/6 association with the cccDNA. Only IFN reduced cccDNA loads and enhanced IFN-stimulated genes. However, the antiviral effects did not persist off treatment and SMC5/6 was again degraded. Remarkably, the blockade of viral entry that started at the end of treatment hindered renewed degradation of SMC5/6. CONCLUSION: These results reveal that therapeutics abrogating all HBV transcripts including HBx promote epigenetic suppression of the HBV minichromosome, whereas strategies protecting the human hepatocytes from reinfection are needed to maintain cccDNA silencing.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Virus de la Hepatitis B/fisiología , Hepatitis B Crónica/metabolismo , Hepatitis B Crónica/virología , Animales , Quimera , ADN Circular/metabolismo , Genoma Viral , Hepatitis B Crónica/prevención & control , Humanos , Ratones
3.
Liver Int ; 41(2): 410-419, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32997847

RESUMEN

BACKGROUNDS & AIMS: As a result of the limited availability of in vivo models for hepatitis D virus (HDV), treatment options for HDV chronically infected patients are still scant. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as HDV entry receptor has enabled the development of new infection models. AIM: To comparatively assess the efficacy and persistence of HDV mono-infection in murine and human hepatocytes in vivo. METHODS: Mice with humanized NTCP (hNTCPed84-87 mice) were generated by editing amino acid residues 84-87 of murine NTCP in C57BL/6J mice. HDV infection was assessed in hNTCPed84-87 mice and in immune deficient uPA/SCID/beige (USB) mice, whose livers were reconstituted with human or murine (hNTCPed84-87 ) hepatocytes. Livers were analysed between 5 and 42 days post-HDV inoculation by qRT-PCR, immunofluorescence and RNA in situ hybridization (ISH). RESULTS: hNTCPed84-87 mice could be infected with HDV genotype 1 or 3. ISH analysis demonstrated the presence of antigenomic HDV RNA positive murine hepatocytes with both genotypes, proving initiation of HDV replication. Strikingly, murine hepatocytes cleared HDV within 21 days both in immunocompetent hNTCPed84-87 mice and in immunodeficient USB mice xenografted with murine hepatocytes. In contrast, HDV infection remained stable for at least 42 days in human hepatocytes. Intrinsic innate responses were not enhanced in any of the HDV mono-infected cells and livers. CONCLUSION: These findings suggest that in addition to NTCP, further species-specific factors limit HDV infection efficacy and persistence in murine hepatocytes. Identifying such species barriers may be crucial to develop novel potential therapeutic targets of HDV.


Asunto(s)
Hepatitis D , Virus de la Hepatitis Delta , Animales , Virus de la Hepatitis B , Virus de la Hepatitis Delta/genética , Hepatocitos , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones SCID
4.
Gut ; 68(1): 150-157, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29217749

RESUMEN

OBJECTIVE: Hepatitis delta virus (HDV) was shown to persist for weeks in the absence of HBV and for months after liver transplantation, demonstrating the ability of HDV to persevere in quiescent hepatocytes. The aim of the study was to evaluate the impact of cell proliferation on HDV persistence in vitro and in vivo. DESIGN: Genetically labelled human sodium taurocholate cotransporting polypeptide (hNTCP)-transduced human hepatoma(HepG2) cells were infected with HBV/HDV and passaged every 7 days for 100 days in the presence of the entry inhibitor Myrcludex-B. In vivo, cell proliferation was triggered by transplanting primary human hepatocytes (PHHs) isolated from HBV/HDV-infected humanised mice into naïve recipients. Virological parameters were measured by quantitative real time polymerase chain reaction (qRT-PCR). Hepatitis delta antigen (HDAg), hepatitis B core antigen (HBcAg) and cell proliferation were determined by immunofluorescence. RESULTS: Despite 15 in vitro cell passages and block of viral spreading by Myrcludex-B, clonal cell expansion permitted amplification of HDV infection. In vivo, expansion of PHHs isolated from HBV/HDV-infected humanised mice was confirmed 3 days, 2, 4 and 8 weeks after transplantation. While HBV markers rapidly dropped in proliferating PHHs, HDAg-positive hepatocytes were observed among dividing cells at all time points. Notably, HDAg-positive cells appeared in clusters, indicating that HDV was transmitted to daughter cells during liver regeneration even in the absence of de novo infection. CONCLUSION: This study demonstrates that HDV persists during liver regeneration by transmitting HDV RNA to dividing cells even in the absence of HBV coinfection. The strong persistence capacities of HDV may also explain why HDV clearance is difficult to achieve in HBV/HDV chronically infected patients.


Asunto(s)
Coinfección/virología , Hepatitis B/virología , Hepatitis D/virología , Virus de la Hepatitis Delta/metabolismo , Regeneración Hepática , Animales , División Celular , Línea Celular , Proliferación Celular , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , ARN Viral/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Gastroenterology ; 154(3): 652-662.e8, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29079518

RESUMEN

BACKGROUND & AIMS: NVR3-778 is a capsid assembly modulator in clinical development. We determined the in vivo antiviral efficacy and effects on innate and endoplasmic reticulum (ER) stress responses of NVR3-778 alone or in combination with pegylated interferon alpha (peg-IFN) and compared with entecavir. METHODS: We performed 2 studies, with a total of 61 uPA/SCID mice with humanized livers. Mice were infected with a hepatitis B virus (HBV) genotype C preparation; we waited 8 weeks for persistent infection of the human hepatocytes in livers of mice. Mice were then randomly assigned to groups (5 or 6 per group) given vehicle (control), NVR3-778, entecavir, peg-IFN, NVR3-778 + entecavir, or NVR3-778 + peg-IFN for 6 weeks. We measured levels of HB surface antigen, HB e antigen, HBV RNA, alanine aminotransferase, and human serum albumin at different time points. Livers were collected and analyzed by immunohistochemistry; levels of HBV DNA, covalently closed circular DNA, and HBV RNA, along with markers of ER stress and IFN response, were quantified. RESULTS: Mice given NVR3-778 or entecavir alone for 6 weeks had reduced serum levels of HBV DNA compared with controls or mice given peg-IFN. The largest reduction was observed in mice given NVR3-778 + peg-IFN; in all mice in this group, the serum level of HBV DNA was below the limit of quantification. NVR3-778 and peg-IFN, but not entecavir, also reduced serum level of HBV RNA. The largest effect was obtained in the NVR3-778 + peg-IFN group, in which serum level of HBV RNA was below the limit of quantification. Levels of HB surface antigen and HB e antigen were reduced significantly in only the groups that received peg-IFN. Levels of covalently closed circular DNA did not differ significantly among groups. NVR3-778 was not associated with any significant changes in level of alanine aminotransferase, the ER stress response, or IFN-stimulated genes. CONCLUSIONS: NVR3-778 has high antiviral activity in mice with humanized livers and stable HBV infection, reducing levels of serum HBV DNA and HBV RNA. Entecavir reduced levels of serum HBV DNA, but had no effect on HBV RNA. The combination of NVR3-778 and peg-IFN prevented viral replication and HBV RNA particle production to a greater extent than each compound alone or entecavir.


Asunto(s)
Antivirales/farmacología , Guanina/análogos & derivados , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B/tratamiento farmacológico , Hepatocitos/efectos de los fármacos , Interferón-alfa/farmacología , Polietilenglicoles/farmacología , Activador de Plasminógeno de Tipo Uroquinasa/genética , Alanina Transaminasa/sangre , Animales , ADN Viral/genética , Modelos Animales de Enfermedad , Quimioterapia Combinada , Estrés del Retículo Endoplásmico/efectos de los fármacos , Genotipo , Guanina/farmacología , Hepatitis B/diagnóstico , Hepatitis B/virología , Antígenos e de la Hepatitis B/sangre , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/crecimiento & desarrollo , Hepatocitos/trasplante , Hepatocitos/virología , Humanos , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Ratones SCID , Ratones Transgénicos , Fenotipo , ARN Viral/genética , Proteínas Recombinantes/farmacología , Albúmina Sérica Humana/metabolismo , Factores de Tiempo , Carga Viral
6.
Gut ; 67(3): 542-552, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28428345

RESUMEN

OBJECTIVE: The stability of the covalently closed circular DNA (cccDNA) in nuclei of non-dividing hepatocytes represents a key determinant of HBV persistence. Contrarily, studies with animal hepadnaviruses indicated that hepatocyte turnover can reduce cccDNA loads but knowledge on the proliferative capacity of HBV-infected primary human hepatocytes (PHHs) in vivo and the fate of cccDNA in dividing PHHs is still lacking. This study aimed to determine the impact of human hepatocyte division on cccDNA stability in vivo. METHODS: PHH proliferation was triggered by serially transplanting hepatocytes from HBV-infected humanised mice into naïve recipients. Cell proliferation and virological changes were assessed by quantitative PCR, immunofluorescence and RNA in situ hybridisation. Viral integrations were analysed by gel separation and deep sequencing. RESULTS: PHH proliferation strongly reduced all infection markers, including cccDNA (median 2.4 log/PHH). Remarkably, cell division appeared to cause cccDNA dilution among daughter cells and intrahepatic cccDNA loss. Nevertheless, HBV survived in sporadic non-proliferating human hepatocytes, so that virological markers rebounded as hepatocyte expansion relented. This was due to reinfection of quiescent PHHs since treatment with the entry inhibitor myrcludex-B or nucleoside analogues blocked viral spread and intrahepatic cccDNA accumulation. Viral integrations were detected both in donors and recipient mice but did not appear to contribute to antigen production. CONCLUSIONS: We demonstrate that human hepatocyte division even without involvement of cytolytic mechanisms triggers substantial cccDNA loss. This process may be fundamental to resolve self-limiting acute infection and should be considered in future therapeutic interventions along with entry inhibition strategies.


Asunto(s)
Proliferación Celular , ADN Circular/metabolismo , ADN Viral/metabolismo , Virus de la Hepatitis B/fisiología , Hepatitis B Crónica , Hepatocitos/fisiología , Animales , División Celular , Quimera , Modelos Animales de Enfermedad , Antígenos del Núcleo de la Hepatitis B/metabolismo , Antígenos de Superficie de la Hepatitis B/sangre , Virus de la Hepatitis B/genética , Hepatitis B Crónica/prevención & control , Humanos , Queratina-18/metabolismo , Lamivudine/uso terapéutico , Lipopéptidos/uso terapéutico , Ratones , Cultivo Primario de Células , Recurrencia , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Carga Viral , Integración Viral , Replicación Viral
7.
Lab Invest ; 98(4): 525-536, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29352225

RESUMEN

Hepatic stellate cells (HSCs) are major contributors to liver fibrosis, as hepatic injuries may cause their transdifferentiation into myofibroblast-like cells capable of producing excessive extracellular matrix proteins. Also, HSCs can modulate engraftment of transplanted hepatocytes and contribute to liver regeneration. Therefore, understanding the biology of human HSCs (hHSCs) is important, but effective methods have not been available to address their fate in vivo. To investigate whether HSCs could engraft and repopulate the liver, we transplanted GFP-transduced immortalized hHSCs into immunodeficient NOD/SCID mice. Biodistribution analysis with radiolabeled hHSCs showed that after intrasplenic injection, the majority of transplanted cells rapidly translocated to the liver. GFP-immunohistochemistry demonstrated that transplanted hHSCs engrafted alongside hepatic sinusoids. Prior permeabilization of the sinusoidal endothelial layer with monocrotaline enhanced engraftment of hHSCs. Transplanted hHSCs remained engrafted without relevant proliferation in the healthy liver. However, after CCl4 or bile duct ligation-induced liver damage, transplanted hHSCs expanded and contributed to extracellular matrix production, formation of bridging cell-septae and cirrhosis-like hepatic pseudolobules. CCl4-induced injury recruited hHSCs mainly to zone 3, whereas after bile duct ligation, hHSCs were mainly in zone 1 of the liver lobule. Transplanted hHSCs neither transdifferentiated into other cell types nor formed tumors in these settings. In conclusion, a humanized mouse model was generated by transplanting hHSCs, which proliferated during hepatic injury and inflammation, and contributed to liver fibrosis. The ability to repopulate the liver with transplanted hHSCs will be particularly significant for mechanistic studies of cell-cell interactions and fibrogenesis within the liver.


Asunto(s)
Modelos Animales de Enfermedad , Células Estrelladas Hepáticas/trasplante , Cirrosis Hepática , Animales , Movimiento Celular , Humanos , Hígado/patología , Ratones , Telomerasa
8.
J Hepatol ; 68(3): 412-420, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29079285

RESUMEN

BACKGROUND & AIMS: The hallmarks of chronic HBV infection are a high viral load (HBV DNA) and even higher levels (>100-fold in excess of virions) of non-infectious membranous particles containing the tolerogenic viral S antigen (HBsAg). Currently, standard treatment effectively reduces viremia but only rarely results in a functional cure (defined as sustained HBsAg loss). There is an urgent need to identify novel therapies that reduce HBsAg levels and restore virus-specific immune responsiveness in patients. We report the discovery of a novel, potent and orally bioavailable small molecule inhibitor of HBV gene expression (RG7834). METHODS: RG7834 antiviral characteristics and selectivity against HBV were evaluated in HBV natural infection assays and in a urokinase-type plasminogen activator/severe combined immunodeficiency humanized mouse model of HBV infection, either alone or in combination with entecavir. RESULTS: Unlike nucleos(t)ide therapies, which reduce viremia but do not lead to an effective reduction in HBV antigen expression, RG7834 significantly reduced the levels of viral proteins (including HBsAg), as well as lowering viremia. Consistent with its proposed mechanism of action, time course RNA-seq analysis revealed a fast and selective reduction in HBV mRNAs in response to RG7834 treatment. Furthermore, oral treatment of HBV-infected humanized mice with RG7834 led to a mean HBsAg reduction of 1.09 log10 compared to entecavir, which had no significant effect on HBsAg levels. Combination of RG7834, entecavir and pegylated interferon α-2a led to significant reductions of both HBV DNA and HBsAg levels in humanized mice. CONCLUSION: We have identified a novel oral HBV viral gene expression inhibitor that blocks viral antigen and virion production, that is highly selective for HBV, and has a unique antiviral profile that is clearly differentiated from nucleos(t)ide analogues. LAY SUMMARY: We discovered a novel small molecule viral expression inhibitor that is highly selective for HBV and unlike current therapy inhibits the expression of viral proteins by specifically reducing HBV mRNAs. RG7834 can therefore potentially provide anti-HBV benefits and increase HBV cure rates, by direct reduction of viral agents needed to complete the viral life cycle, as well as a reduction of viral agents involved in evasion of the host immune responses.


Asunto(s)
Antivirales , Regulación Viral de la Expresión Génica/efectos de los fármacos , Virus de la Hepatitis B , Hepatitis B Crónica , Bibliotecas de Moléculas Pequeñas , Administración Oral , Animales , Antivirales/administración & dosificación , Antivirales/efectos adversos , Antivirales/farmacocinética , Disponibilidad Biológica , ADN Viral/aislamiento & purificación , Modelos Animales de Enfermedad , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/virología , Ratones , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Bibliotecas de Moléculas Pequeñas/efectos adversos , Bibliotecas de Moléculas Pequeñas/farmacocinética , Resultado del Tratamiento , Carga Viral/efectos de los fármacos
9.
Liver Int ; 37(8): 1128-1137, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27992676

RESUMEN

BACKGROUND & AIMS: Enhancement of host anti-oxidant enzymes, such as haemoxygenase-1, may attenuate virus-mediated hepatocyte injury, while the induction of HO-1 by cobalt-protoporphyrin-IX (CoPP) administration, as the application of its haem degradation product biliverdin (BV), was shown to hinder HCV replication in vitro. In addition, (GT)n -repeats length in the polymorphic region of the HO-1 promoter may affect HO-1 expression and responsiveness to infection and disease severity. Aim of this study was to investigate the antiviral and hepatoprotective effects of CoPP-mediated HO-1 induction, alone or in combination with interferon alpha (peg-IFNα), in HCV-infected mice harbouring hepatocytes from donors with different HO-1-promoter polymorphisms. METHODS: Upon establishment of HCV infection, CoPP, BV and peg-IFNα were given alone or in combination. Viraemia changes and intrahepatic human gene expression were determined by qRT-PCR and immunohistochemistry. RESULTS: CoPP administration increased human HO-1 expression and significantly reduced viraemia, although changes correlated with promoter length (Δ0.5log and Δ2log reduction with medium- and short-polymorphism respectively). Polymorphisms did not influence BV-mediated antiviral effects (Δ1log). Notably, HO-1 induction attenuated basal HCV-driven enhancement of interferon genes and pro-inflammatory cytokines, both in cells with short- or medium-polymorphisms. Moreover, simultaneous administration of CoPP and peg-IFNα reduced viraemia even stronger (median 3log), whereas 1log viraemia reduction was determined in mice receiving peg-IFNα monotherapy. CONCLUSIONS: Although the protective function of HO-1 could be elicited in vivo with both host polymorphisms, the strength of HO-1 induction and suppression of HCV occurred in a polymorphism-dependent manner, indicating that host-genetic determinants may affect disease progression and infection outcome.


Asunto(s)
Hemo-Oxigenasa 1/metabolismo , Hepacivirus/inmunología , Hepatitis C/terapia , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Biliverdina/farmacología , Biliverdina/uso terapéutico , Hemo-Oxigenasa 1/genética , Hepacivirus/efectos de los fármacos , Hepatitis C/genética , Hepatitis C/virología , Humanos , Interferón-alfa/farmacología , Interferón-alfa/uso terapéutico , Ratones , Polimorfismo Genético , Activación Transcripcional , Replicación Viral/efectos de los fármacos
10.
J Hepatol ; 64(5): 1033-1040, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26805671

RESUMEN

BACKGROUND & AIMS: Hepatitis E virus (HEV) is a major cause of acute hepatitis as well as chronic infection in immunocompromised individuals; however, in vivo infection models are limited. The aim of this study was to establish a small animal model to improve our understanding of HEV replication mechanisms and permit the development of effective therapeutics. METHODS: UPA/SCID/beige mice repopulated with primary human hepatocytes were used for infection experiments with HEV genotype (GT) 1 and 3. Virological parameters were determined at the serological and intrahepatic level by real time PCR, immunohistochemistry and RNA in situ hybridization. RESULTS: Establishment of HEV infection was achieved after intravenous injection of stool-derived virions and following co-housing with HEV-infected animals but not via inoculation of serum-derived HEV. GT 1 infection resulted in a rapid rise of viremia and high stable titres in serum, liver, bile and faeces of infected mice for more than 25 weeks. In contrast, viremia in GT 3 infected mice developed more slowly and displayed lower titres in all analysed tissues as compared to GT 1. HEV-infected human hepatocytes could be visualized using HEV ORF2 and ORF3 specific antibodies and HEV RNA in situ hybridization probes. Finally, six-week administration of ribavirin led to a strong reduction of viral replication in the serum and liver of GT 1 infected mice. CONCLUSION: We established an efficient model of HEV infection to test the efficacy of antiviral agents and to exploit mechanisms of HEV replication and interaction with human hepatocytes in vivo.


Asunto(s)
Antivirales/uso terapéutico , Virus de la Hepatitis E/genética , Hepatitis E/tratamiento farmacológico , Hígado/virología , ARN Viral/análisis , Replicación Viral/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Hepatitis E/virología , Humanos , Hibridación in Situ , Hígado/patología , Ratones , Ratones SCID , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Nucleic Acids Res ; 42(7): e56, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24476916

RESUMEN

RGB marking and DNA barcoding are two cutting-edge technologies in the field of clonal cell marking. To combine the virtues of both approaches, we equipped LeGO vectors encoding red, green or blue fluorescent proteins with complex DNA barcodes carrying color-specific signatures. For these vectors, we generated highly complex plasmid libraries that were used for the production of barcoded lentiviral vector particles. In proof-of-principle experiments, we used barcoded vectors for RGB marking of cell lines and primary murine hepatocytes. We applied single-cell polymerase chain reaction to decipher barcode signatures of individual RGB-marked cells expressing defined color hues. This enabled us to prove clonal identity of cells with one and the same RGB color. Also, we made use of barcoded vectors to investigate clonal development of leukemia induced by ectopic oncogene expression in murine hematopoietic cells. In conclusion, by combining RGB marking and DNA barcoding, we have established a novel technique for the unambiguous genetic marking of individual cells in the context of normal regeneration as well as malignant outgrowth. Moreover, the introduction of color-specific signatures in barcodes will facilitate studies on the impact of different variables (e.g. vector type, transgenes, culture conditions) in the context of competitive repopulation studies.


Asunto(s)
Análisis de la Célula Individual/métodos , Animales , Células Cultivadas , Células Clonales , Femenino , Vectores Genéticos , Células HEK293 , Humanos , Leucemia/genética , Regeneración Hepática , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa , Receptor trkA/genética , Análisis de Secuencia de ADN , Transducción Genética
12.
J Hepatol ; 63(2): 346-53, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25795587

RESUMEN

BACKGROUND & AIMS: The limited availability of hepatitis Delta virus (HDV) infection models has hindered studies of interactions between HDV and infected hepatocytes. The aim was to investigate the antiviral state of HDV infected human hepatocytes in the setting of co-infection with hepatitis B virus (HBV) compared to HBV mono-infection using human liver chimeric mice. METHODS: Viral loads, human interferon stimulated genes (hISGs) and cytokines were determined in humanized uPA/SCID/beige (USB) mice by qRT-PCR, ELISA and immunofluorescence. RESULTS: Upon HBV/HDV inoculation, all mice developed viremia, which was accompanied by a significant induction of hISGs (i.e. hISG15, hSTATs, hHLA-E) compared to uninfected mice, while HBV mono-infection led to weaker hISG elevations. In the setting of chronic infection enhancement of innate defense mechanisms was significantly more prominent in HBV/HDV infected mice. Also the induction of human-specific cytokines (hIP10, hTGF-ß, hIFN-ß and hIFN-λ) was detected in HBV/HDV co-infected animals, while levels remained lower or below detection in uninfected and HBV mono-infected mice. Moreover, despite the average increase of hSTAT levels determined in HBV/HDV infected livers, we observed a weaker hSTAT accumulation in nuclei of hepatocytes displaying very high HDAg levels, suggesting that HDAg may in part limit hSTAT signaling. CONCLUSIONS: Establishment of HDV infection provoked a clear enhancement of the antiviral state of the human hepatocytes in chimeric mice. Elevated pre-treatment ISG and interferon levels may directly contribute to inflammation and liver damage, providing a rationale for the more severe course of HDV-associated liver disease. Such antiviral state induction might also contribute to the lower levels of HBV activity frequently found in co-infected hepatocytes.


Asunto(s)
Coinfección/inmunología , Virus de la Hepatitis B/genética , Hepatitis B Crónica/inmunología , Hepatitis D Crónica/inmunología , Virus de la Hepatitis Delta/genética , Inmunidad Innata , Animales , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Hepatitis B Crónica/complicaciones , Hepatitis B Crónica/virología , Hepatitis D Crónica/complicaciones , Hepatitis D Crónica/virología , Hepatocitos/patología , Hepatocitos/virología , Humanos , Ratones , Ratones SCID , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Citocinas/metabolismo , Carga Viral
13.
Hepatology ; 60(5): 1483-93, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24711282

RESUMEN

UNLABELLED: Chronic hepatitis B virus (HBV) infection has been associated with alterations in lipid metabolism. Moreover, the Na+-taurocholate cotransporting polypeptide (NTCP), responsible for bile acid (BA) uptake into hepatocytes, was identified as the functional cellular receptor mediating HBV entry. The aim of the study was to determine whether HBV alters the liver metabolic profile by employing HBV-infected and uninfected human liver chimeric mice. Humanized urokinase plasminogen activator/severe combined immunodeficiency mice were used to establish chronic HBV infection. Gene expression profiles were determined by real-time polymerase chain reaction using primers specifically recognizing transcripts of either human or murine origin. Liver biopsy samples obtained from HBV-chronic individuals were used to validate changes determined in mice. Besides modest changes in lipid metabolism, HBV-infected mice displayed a significant enhancement of human cholesterol 7α-hydroxylase (human [h]CYP7A1; median 12-fold induction; P<0.0001), the rate-limiting enzyme promoting the conversion of cholesterol to BAs, and of genes involved in transcriptional regulation, biosynthesis, and uptake of cholesterol (human sterol-regulatory element-binding protein 2, human 3-hydroxy-3-methylglutaryl-coenzyme A reductase, and human low-density lipoprotein receptor), compared to uninfected controls. Significant hCYP7A1 induction and reduction of human small heterodimer partner, the corepressor of hCYP7A1 transcription, was also confirmed in liver biopsies from HBV-infected patients. Notably, administration of Myrcludex-B, an entry inhibitor derived from the pre-S1 domain of the HBV envelope, provoked a comparable murine CYP7A1 induction in uninfected mice, thus designating the pre-S1 domain as the viral component triggering such metabolic alterations. CONCLUSION: Binding of HBV to NTCP limits its function, thus promoting compensatory BA synthesis and cholesterol provision. The intimate link determined between HBV and liver metabolism underlines the importance to exploit further metabolic pathways, as well as possible NTCP-related viral-drug interactions.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colesterol/metabolismo , Virus de la Hepatitis B/fisiología , Hepatitis B/metabolismo , Hepatocitos/metabolismo , Animales , Colesterol 7-alfa-Hidroxilasa/metabolismo , Expresión Génica , Hepatitis B/virología , Interacciones Huésped-Patógeno , Humanos , Metabolismo de los Lípidos , Lipopéptidos , Ratones SCID , Ratones Transgénicos , Receptores Citoplasmáticos y Nucleares/metabolismo
14.
J Hepatol ; 60(3): 500-7, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24398036

RESUMEN

BACKGROUND & AIMS: Pegylated interferon-alpha (PegIFNα) remains an attractive treatment option for chronic hepatitis B virus (HBV) infection because it induces higher rates of antigen loss and seroconversion than treatment with polymerase inhibitors. Although early HBsAg decline is recognised as the best predictor of sustained response to IFN-based therapy, it is unclear whether immune cell functions are required to induce significant antigenemia reduction in the first weeks of treatment. Aim of the study was to investigate whether PegIFNα can induce sustained human hepatocyte responsiveness and substantial loss of circulating and intrahepatic viral antigen loads in a system lacking immune cell functions. METHODS: HBV-infected humanized uPA/SCID mice received either PegIFNα, entecavir (ETV), or both agents in combination. Serological and intrahepatic changes were determined by qRT-PCR and immunohistochemistry and compared to untreated mice. RESULTS: After 4 weeks of treatment, median viremia reduction was greater in mice treated with ETV (either with or without PegIFNα) than with PegIFNα. In contrast, levels of circulating HBeAg, HBsAg, and intrahepatic HBcAg were significantly reduced (p = 0.03) only in mice receiving PegIFNα alone or in combination, as compared to mice receiving ETV monotherapy. Progressive antigen reduction was also demonstrated in mice receiving PegIFNα for 12 weeks (HBeAg = Δ1log; HBsAg = Δ1.4log; p < 0.0001). Notably, repeated administrations of the longer-active PegIFNα could breach the impairment of HBV-infected hepatocyte responsiveness and induce sustained enhancement of human interferon stimulated genes (ISG). CONCLUSIONS: The antiviral effects of PegIFNα exerted on the human hepatocytes can induce sustained responsiveness and trigger substantial HBV antigen decline without claiming the involvement of immune cell responses.


Asunto(s)
Antivirales/administración & dosificación , Antígenos de Superficie de la Hepatitis B/sangre , Hepatitis B Crónica/tratamiento farmacológico , Interferón-alfa/administración & dosificación , Polietilenglicoles/administración & dosificación , Animales , ADN Viral/sangre , Guanina/administración & dosificación , Guanina/análogos & derivados , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/virología , Hepatocitos/virología , Humanos , Interferón alfa-2 , Ratones , Proteínas Recombinantes/administración & dosificación
15.
J Hepatol ; 60(3): 538-44, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24280293

RESUMEN

BACKGROUND & AIMS: Clinical studies have shown that hepatitis delta virus (HDV) infection can persist for years and intrahepatic latency of the large delta antigen (HDAg) has been detected following liver transplantation. However, large HDAg arising via RNA-editing is associated with increasing amounts of non-infectious HDV quasi-species. This study investigated whether HDV could persist intrahepatically in the absence of HBV in vivo and whether infectious HDV could subsequently be released following HBV super-infection. METHODS: Humanized mice were infected with HDV particles lacking HBV. To test for rescue of latent HDV infection 3 and 6 weeks HDV mono-infected mice were super-infected with HBV. Viral loads and cell toxicity were determined by qRT-PCR and immunohistochemistry. RESULTS: The presence of HDAg-positive human hepatocytes determined after 2, 3, and 6 weeks of HDV inoculation demonstrated establishment and maintenance of intrahepatic HDV mono-infection. Although intrahepatic amounts of large HDAg and edited HDV RNA forms increased over time in HDV mono-infected livers, HBV super-infection led to prompt viremia development (up to 10(8) HDV RNA and 10(7) HBV-DNA copies/ml) even after 6 weeks of latent mono-infection. Concurrently, the number of HDAg-positive human hepatocytes increased, demonstrating intrahepatic HDV spreading. The infectivity of the rescued HDV virions was verified by serial passage in naive chimeric mice. CONCLUSIONS: HDV mono-infection can persist intrahepatically for at least 6 weeks before being rescued by HBV. Conversion of a latent HDV infection to a productive HBV/HDV co-infection may contribute to HDV persistence even in patients with low HBV replication and in the setting of liver transplantation.


Asunto(s)
Coinfección/virología , Hepatitis B/virología , Hepatitis D/virología , Animales , Secuencia de Bases , Virus de la Hepatitis B/fisiología , Virus de la Hepatitis Delta/fisiología , Humanos , Ratones , Datos de Secuencia Molecular , Replicación Viral
16.
Methods Mol Biol ; 2837: 171-184, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044084

RESUMEN

The hepatitis delta virus (HDV) is a small RNA virus (1700 base pairs), which uses the surface proteins of the hepatitis B virus (HBV) as an envelope. Accurate and reliable quantitative detection of HDV RNA is central for scientific and translational clinical research or diagnostic purposes. However, HDV poses challenges for nucleic acid amplification techniques: (1) the circular genome displays high intramolecular base pairing; (2) high content of cytosine and guanine; and (3) enormous genomic diversity among the eight known HDV genotypes (GTs). Here, we provide step-by-step instructions for (A) a manual workflow to perform a quantitative HDV reverse transcription (RT)-PCR from serum and liver tissue and (B) a quantitative HDV RT-PCR assay with whole process control to be used for serum or plasma samples run on a fully automated system. Both assays target the conserved ribozyme region and demonstrate inclusivity for all eight HDV GTs. The choice of assay depends on the experimental needs and equipment availability. While the former is ideal for scientific research laboratories, the latter provides a useful tool in the field of translational research or diagnostics.


Asunto(s)
Hepatitis D , Virus de la Hepatitis Delta , Hígado , ARN Viral , Flujo de Trabajo , Virus de la Hepatitis Delta/genética , Virus de la Hepatitis Delta/aislamiento & purificación , Humanos , ARN Viral/genética , Hepatitis D/diagnóstico , Hepatitis D/virología , Hígado/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Genotipo
17.
J Hepatol ; 58(5): 861-7, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23246506

RESUMEN

BACKGROUND & AIMS: Currently approved antivirals rarely cure hepatitis B virus (HBV) infection. Therefore additional therapeutic strategies interfering with other viral replication steps are needed. Using synthetic lipopeptides derived from the HBV envelope protein, we previously demonstrated prevention of de novo HBV infection in vivo. We aimed at investigating the ability of the lipopeptide Myrcludex-B to block HBV spreading post-infection. METHODS: uPA/SCID mice reconstituted with human hepatocytes were infected with HBV. Daily subcutaneous Myrcludex-B administration was initiated either 3 days, 3 weeks or 8 weeks post HBV inoculation. Viral loads were quantitated in serum and liver, and visualized by immunohistochemistry. RESULTS: Myrcludex-B efficiently prevented viral spreading from the initially infected human hepatocytes, as demonstrated by the lack of increase in viremia, antigen levels and amount of HBcAg-positive human hepatocytes determined 6 weeks after treatment. Myrcludex-B efficiently blocked HBV dissemination also when treatment was started in the ramp-up phase of infection, in mice displaying moderate levels of circulating virions (median 3 × 10(6)HBV DNA copies/ml). Notably, after 6 weeks of treatment, not only the amount of HBcAg-positive hepatocytes, but also intrahepatic cccDNA loads, remained comparable to values found in mice sacrificed 3 weeks post-infection. In none of the experimental settings, drug administration affected human hepatocyte half-life or altered virion productivity. CONCLUSIONS: Myrcludex-B efficiently not only prevented HBV spreading from infected human hepatocytes in vivo, but also hindered amplification of the cccDNA pool in initially infected hepatocytes. Administration of an entry inhibitor, possibly used in combination with current HBV drugs, may improve patients' treatment outcome.


Asunto(s)
Antivirales/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B/prevención & control , Lipopéptidos/farmacología , Hígado/virología , Internalización del Virus/efectos de los fármacos , Animales , Antivirales/uso terapéutico , ADN Viral/sangre , Modelos Animales de Enfermedad , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Hepatocitos/patología , Hepatocitos/virología , Humanos , Lipopéptidos/uso terapéutico , Hígado/patología , Ratones , Ratones SCID , Resultado del Tratamiento , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiología
18.
Hepatology ; 55(3): 685-94, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22031488

RESUMEN

UNLABELLED: No specific drugs are currently available against hepatitis delta virus (HDV), a defective virus leading to the most severe form of chronic viral hepatitis in man. The lack of convenient HDV infection models has hampered the development of effective therapeutics. In this study, naïve and hepatitis B virus (HBV) chronically infected humanized uPA/SCID mice were employed to establish a small animal model of HBV/HDV coinfection and superinfection. For preclinical antiviral drug evaluation, the GMP version of the myristoylated preS-peptide (Myrcludex-B), a lipopeptide derived from the pre-S1 domain of the HBV envelope, was applied to prevent de novo HBV/HDV coinfection in vivo. Virological parameters were determined at serological and intrahepatic level both by real-time polymerase chain reaction (PCR) and by immunohistochemistry. Establishment of HDV infection was highly efficient in both HBV-infected and naïve chimeric mice with HDV titers rising up to 1 × 10E9 copies/mL. Notably, HDV superinfection led to a median 0.6log reduction of HBV viremia, which although not statistically significant suggests that HDV may hinder HBV replication. In the setting of HBV/HDV simultaneous infection, a majority of human hepatocytes stained HDAg-positive long before HBV spreading was completed, confirming that HDV can replicate intrahepatically also in the absence of HBV infection. Furthermore, the increase of HBV viremia and intrahepatic cccDNA loads was significantly slower than in HBV mono-infected mice. Treatment with the HBV entry inhibitor Myrcludex-B, efficiently hindered the establishment of HDV infection in vivo. CONCLUSION: We established an efficient model of HBV/HDV infection to exploit mechanisms of viral interference in human hepatocytes and to test the efficacy of an HDV-entry inhibitor in vivo.


Asunto(s)
Antivirales/uso terapéutico , Quimera/virología , Virus de la Hepatitis B/fisiología , Hepatitis B/tratamiento farmacológico , Hepatitis D/tratamiento farmacológico , Virus de la Hepatitis Delta/fisiología , Activador de Plasminógeno de Tipo Uroquinasa/genética , Animales , Antivirales/farmacología , Células Cultivadas , Coinfección/tratamiento farmacológico , Comorbilidad , Modelos Animales de Enfermedad , Hepatitis B/epidemiología , Hepatitis D/epidemiología , Antígenos de Hepatitis delta/metabolismo , Hepatocitos/patología , Hepatocitos/virología , Humanos , Lipopéptidos/farmacología , Lipopéptidos/uso terapéutico , Ratones , Ratones SCID , Ratones Transgénicos , Resultado del Tratamiento , Replicación Viral/efectos de los fármacos
19.
JHEP Rep ; 5(4): 100673, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36908749

RESUMEN

Background & Aims: Pegylated interferon alpha (pegIFNα) is commonly used for the treatment of people infected with HDV. However, its mode of action in HDV-infected cells remains elusive and only a minority of people respond to pegIFNα therapy. Herein, we aimed to assess the responsiveness of three different cloned HDV strains to pegIFNα. We used a previously cloned HDV genotype 1 strain (dubbed HDV-1a) that appeared insensitive to interferon-α in vitro, a new HDV strain (HDV-1p) we isolated from an individual achieving later sustained response to IFNα therapy, and one phylogenetically distant genotype 3 strain (HDV-3). Methods: PegIFNα was administered to human liver chimeric mice infected with HBV and the different HDV strains or to HBV/HDV infected human hepatocytes isolated from chimeric mice. Virological parameters and host responses were analysed by qPCR, sequencing, immunoblotting, RNA in situ hybridisation and immunofluorescence staining. Results: PegIFNα treatment efficiently reduced HDV RNA viraemia (∼2-log) and intrahepatic HDV markers both in mice infected with HBV/HDV-1p and HBV/HDV-3. In contrast, HDV parameters remained unaffected by pegIFNα treatment both in mice (up to 9 weeks) and in isolated cells infected with HBV/HDV-1a. Notably, HBV viraemia was efficiently lowered (∼2-log) and human interferon-stimulated genes similarly induced in all three HBV/HDV-infected mouse groups receiving pegIFNα. Genome sequencing revealed highly conserved ribozyme and L-hepatitis D antigen post-translational modification sites among all three isolates. Conclusions: Our comparative study indicates the ability of pegIFNα to lower HDV loads in stably infected human hepatocytes in vivo and the existence of complex virus-specific determinants of IFNα responsiveness. Impact and implications: Understanding factors counteracting HDV infections is paramount to develop curative therapies. We compared the responsiveness of three different cloned HDV strains to pegylated interferon alpha in chronically infected mice. The different responsiveness of these HDV isolates to treatment highlights a previously underestimated heterogeneity among HDV strains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA