Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(39): e2201304119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122214

RESUMEN

Several neuronal mechanisms have been proposed to account for the formation of cognitive abilities through postnatal interactions with the physical and sociocultural environment. Here, we introduce a three-level computational model of information processing and acquisition of cognitive abilities. We propose minimal architectural requirements to build these levels, and how the parameters affect their performance and relationships. The first sensorimotor level handles local nonconscious processing, here during a visual classification task. The second level or cognitive level globally integrates the information from multiple local processors via long-ranged connections and synthesizes it in a global, but still nonconscious, manner. The third and cognitively highest level handles the information globally and consciously. It is based on the global neuronal workspace (GNW) theory and is referred to as the conscious level. We use the trace and delay conditioning tasks to, respectively, challenge the second and third levels. Results first highlight the necessity of epigenesis through the selection and stabilization of synapses at both local and global scales to allow the network to solve the first two tasks. At the global scale, dopamine appears necessary to properly provide credit assignment despite the temporal delay between perception and reward. At the third level, the presence of interneurons becomes necessary to maintain a self-sustained representation within the GNW in the absence of sensory input. Finally, while balanced spontaneous intrinsic activity facilitates epigenesis at both local and global scales, the balanced excitatory/inhibitory ratio increases performance. We discuss the plausibility of the model in both neurodevelopmental and artificial intelligence terms.


Asunto(s)
Cognición , Modelos Neurológicos , Redes Neurales de la Computación , Inteligencia Artificial , Cognición/fisiología , Dopamina , Neuronas/fisiología
2.
iScience ; 27(7): 110371, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39055916

RESUMEN

Ab initio computational reconstructions of protein-protein interaction (PPI) networks will provide invaluable insights into cellular systems, enabling the discovery of novel molecular interactions and elucidating biological mechanisms within and between organisms. Leveraging the latest generation protein language models and recurrent neural networks, we present SENSE-PPI, a sequence-based deep learning model that efficiently reconstructs ab initio PPIs, distinguishing partners among tens of thousands of proteins and identifying specific interactions within functionally similar proteins. SENSE-PPI demonstrates high accuracy, limited training requirements, and versatility in cross-species predictions, even with non-model organisms and human-virus interactions. Its performance decreases for phylogenetically more distant model and non-model organisms, but signal alteration is very slow. In this regard, it demonstrates the important role of parameters in protein language models. SENSE-PPI is very fast and can test 10,000 proteins against themselves in a matter of hours, enabling the reconstruction of genome-wide proteomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA