Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(31): 21401-21416, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38922296

RESUMEN

Long-acting drug delivery systems are promising platforms to improve patient adherence to medication by delivering drugs over sustained periods and removing the need for patients to comply with oral regimens. This research paper provides a proof-of-concept for the development of a new optimized in situ forming injectable depot based on a tetrabenzylamine-tetraglycine-d-lysine-O-phospho-d-tyrosine peptoid-D-peptide formulation ((NPhe)4GGGGk(AZT)y(p)-OH). The chemical versatility of the peptoid-peptide motif allows low-molecular-weight drugs to be precisely and covalently conjugated. After subcutaneous injection, a hydrogel depot forms from the solubilized peptoid-peptide-drug formulation in response to phosphatase enzymes present within the skin space. This system is able to deliver clinically relevant concentrations of a model drug, the antiretroviral zidovudine (AZT), for 35 days in Sprague-Dawley rats. Oscillatory rheology demonstrated that hydrogel formation began within ∼30 s, an important characteristic of in situ systems for reducing initial drug bursts. Gel formation continued for up to ∼90 min. Small-angle neutron scattering data reveal narrow-radius fibers (∼0.78-1.8 nm) that closely fit formation via a flexible cylinder elliptical model. The inclusion of non-native peptoid monomers and D-variant amino acids confers protease resistance, enabling enhanced biostability to be demonstrated in vitro. Drug release proceeds via hydrolysis of an ester linkage under physiological conditions, releasing the drug in an unmodified form and further reducing the initial drug burst. Subcutaneous administration of (NPhe)4GGGGk(AZT)y(p)-OH to Sprague-Dawley rats resulted in zidovudine blood plasma concentrations within the 90% maximal inhibitory concentration (IC90) range (30-130 ng mL-1) for 35 days.


Asunto(s)
Hidrogeles , Peptoides , Ratas Sprague-Dawley , Hidrogeles/química , Animales , Peptoides/química , Ratas , Sistemas de Liberación de Medicamentos , Zidovudina/química , Zidovudina/administración & dosificación , Zidovudina/farmacología , Péptidos/química , Inyecciones Subcutáneas
2.
Small ; 20(35): e2401631, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38693099

RESUMEN

Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.


Asunto(s)
Vacunas contra el Cáncer , Inmunoterapia , Nanoestructuras , Neoplasias , Humanos , Vacunas contra el Cáncer/inmunología , Neoplasias/terapia , Neoplasias/inmunología , Nanoestructuras/química , Inmunoterapia/métodos , Animales , Microambiente Tumoral , Nanovacunas
3.
Mol Pharm ; 21(6): 2813-2827, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38752564

RESUMEN

Psoriasis, affecting 2-3% of the global population, is a chronic inflammatory skin condition without a definitive cure. Current treatments focus on managing symptoms. Recognizing the need for innovative drug delivery methods to enhance patient adherence, this study explores a new approach using calcipotriol monohydrate (CPM), a primary topical treatment for psoriasis. Despite its effectiveness, CPM's therapeutic potential is often limited by factors like the greasiness of topical applications, poor skin permeability, low skin retention, and lack of controlled delivery. To overcome these challenges, the study introduces CPM in the form of nanosuspensions (NSs), characterized by an average particle size of 211 ± 2 nm. These CPM NSs are then incorporated into a trilayer dissolving microneedle patch (MAP) made from poly(vinylpyrrolidone) and w poly(vinyl alcohol) as needle arrays and prefrom 3D printed polylactic acid backing layer. This MAP features rapidly dissolving tips and exhibits good mechanical properties and insertion capability with delivery efficiency compared to the conventional Daivonex ointment. The effectiveness of this novel MAP was tested on Sprague-Dawley rats with imiquimod-induced psoriasis, demonstrating efficacy comparable to the marketed ointment. This innovative trilayer dissolving MAP represents a promising new local delivery system for calcipotriol, potentially revolutionizing psoriasis treatment by enhancing drug delivery and patient compliance.


Asunto(s)
Administración Cutánea , Calcitriol , Sistemas de Liberación de Medicamentos , Agujas , Psoriasis , Ratas Sprague-Dawley , Psoriasis/tratamiento farmacológico , Animales , Calcitriol/análogos & derivados , Calcitriol/administración & dosificación , Ratas , Sistemas de Liberación de Medicamentos/métodos , Absorción Cutánea/efectos de los fármacos , Piel/metabolismo , Piel/efectos de los fármacos , Piel/patología , Tamaño de la Partícula , Masculino , Nanopartículas/química , Imiquimod/administración & dosificación , Suspensiones , Fármacos Dermatológicos/administración & dosificación , Fármacos Dermatológicos/farmacocinética , Parche Transdérmico
4.
Phytother Res ; 38(6): 3060-3079, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602108

RESUMEN

Phytoestrogens, also known as xenoestrogens, are secondary metabolites derived from plants that have similar structures and biological effects as human estrogens. These compounds do not directly affect biological functions but can act as agonists or antagonists depending on the level of endogenous estrogen in the body. Phytoestrogens may have an epigenetic mechanism of action independent of estrogen receptors. These compounds are found in more than 300 plant species and are synthesized through the phenylpropanoid pathway, with specific enzymes leading to various chemical structures. Phytoestrogens, primarily phenolic compounds, include isoflavonoids, flavonoids, stilbenes, and lignans. Extensive research in animals and humans has demonstrated the protective effects of phytoestrogens on estrogen-dependent diseases. Clinical trials have also shown their potential benefits in conditions such as osteoporosis, Parkinson's disease, and certain types of cancer. This review provides a concise overview of phytoestrogen classification, chemical diversity, and biosynthesis and discusses the potential therapeutic effects of phytoestrogens, as well as their preclinical and clinical development.


Asunto(s)
Fitoestrógenos , Fitoestrógenos/farmacología , Fitoestrógenos/química , Humanos , Animales , Osteoporosis/tratamiento farmacológico , Flavonoides/farmacología , Flavonoides/química , Neoplasias/tratamiento farmacológico , Isoflavonas/farmacología , Isoflavonas/química
5.
Environ Res ; 237(Pt 1): 116894, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586450

RESUMEN

Lyotropic liquid crystals are self-assembled, non-lamellar, and mesophase nanostructured materials that have garnered significant attention as drug carriers. Cubosomes, a subtype of lyotropic liquid crystalline nanoparticles, possess three-dimensional structures that display bicontinuous cubic liquid-crystalline patterns. These patterns are formed through the self-organization of unsaturated monoglycerides (amphphilic lipids such as glyceryl monooleate or phytantriol), followed by stabilization using steric polymers (poloxamers). Owing to their bicontinuous structure and steric polymer-based stabilization, cubosomes have been demonstrated to possess greater entrapment efficiency for hydrophobic drugs compared to liposomes, while also exhibiting high stability. In the past decade, there has been significant interest in cubosomes due to their ability to deliver therapeutic and contrast agents for cancer treatment and imaging with minimal side effects, establishing them as a safe and effective approach. Concerning these advantages, the present review elaborates on the general aspects, composition, and preparation techniques of cubosomes, followed by explanations of their mechanisms of drug loading and release patterns. Furthermore, the review provides meticulous discussions on the use of cubosomes in the treatment and imaging of various types of cancer, culminating in the enumeration of patents related to cubosome-based drug delivery systems.

6.
Nanomedicine ; 54: 102711, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37813236

RESUMEN

For the past decades, gene editing demonstrated the potential to attenuate each of the root causes of genetic, infectious, immune, cancerous, and degenerative disorders. More recently, Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9 (CRISPR-Cas9) editing proved effective for editing genomic, cancerous, or microbial DNA to limit disease onset or spread. However, the strategies to deliver CRISPR-Cas9 cargos and elicit protective immune responses requires safe delivery to disease targeted cells and tissues. While viral vector-based systems and viral particles demonstrate high efficiency and stable transgene expression, each are limited in their packaging capacities and secondary untoward immune responses. In contrast, the nonviral vector lipid nanoparticles were successfully used for as vaccine and therapeutic deliverables. Herein, we highlight each available gene delivery systems for treating and preventing a broad range of infectious, inflammatory, genetic, and degenerative diseases. STATEMENT OF SIGNIFICANCE: CRISPR-Cas9 gene editing for disease treatment and prevention is an emerging field that can change the outcome of many chronic debilitating disorders.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Técnicas de Transferencia de Gen , Terapia Genética
7.
ACS Appl Bio Mater ; 7(7): 4270-4292, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38950103

RESUMEN

Bone, a fundamental constituent of the human body, is a vital scaffold for support, protection, and locomotion, underscoring its pivotal role in maintaining skeletal integrity and overall functionality. However, factors such as trauma, disease, or aging can compromise bone structure, necessitating effective strategies for regeneration. Traditional approaches often lack biomimetic environments conducive to efficient tissue repair. Nanofibrous microspheres (NFMS) present a promising biomimetic platform for bone regeneration by mimicking the native extracellular matrix architecture. Through optimized fabrication techniques and the incorporation of active biomolecular components, NFMS can precisely replicate the nanostructure and biochemical cues essential for osteogenesis promotion. Furthermore, NFMS exhibit versatile properties, including tunable morphology, mechanical strength, and controlled release kinetics, augmenting their suitability for tailored bone tissue engineering applications. NFMS enhance cell recruitment, attachment, and proliferation, while promoting osteogenic differentiation and mineralization, thereby accelerating bone healing. This review highlights the pivotal role of NFMS in bone tissue engineering, elucidating their design principles and key attributes. By examining recent preclinical applications, we assess their current clinical status and discuss critical considerations for potential clinical translation. This review offers crucial insights for researchers at the intersection of biomaterials and tissue engineering, highlighting developments in this expanding field.


Asunto(s)
Materiales Biomiméticos , Regeneración Ósea , Microesferas , Nanofibras , Ingeniería de Tejidos , Humanos , Regeneración Ósea/efectos de los fármacos , Nanofibras/química , Materiales Biomiméticos/química , Osteogénesis/efectos de los fármacos , Animales , Tamaño de la Partícula , Huesos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ensayo de Materiales , Andamios del Tejido/química
8.
Ageing Res Rev ; 101: 102481, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236855

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia and accounts for 60-70 % of all cases. It affects millions of people worldwide. AD poses a substantial economic burden on societies and healthcare systems. AD is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. As the prevalence of AD continues to increase, understanding its pathogenesis, improving diagnostic methods, and developing effective therapeutics have become paramount. This comprehensive review delves into the intricate mechanisms underlying AD, explores the current state of diagnostic techniques, and examines emerging therapeutic strategies. By revealing the complexities of AD, this review aims to contribute to the growing body of knowledge surrounding this devastating disease.

9.
Int J Pharm ; 658: 124192, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38703931

RESUMEN

Ocular delivery is the most challenging aspect in the field of pharmaceutical research. The major hurdle for the controlled delivery of drugs to the eye includes the physiological static barriers such as the complex layers of the cornea, sclera and retina which restrict the drug from permeating into the anterior and posterior segments of the eye. Recent years have witnessed inventions in the field of conventional and nanocarrier drug delivery which have shown considerable enhancement in delivering small to large molecules across the eye. The dynamic challenges associated with conventional systems include limited drug contact time and inadequate ocular bioavailability resulting from solution drainage, tear turnover, and dilution or lacrimation. To this end, various bioactive-based nanosized carriers including liposomes, ethosomes, niosomes, dendrimer, nanogel, nanofibers, contact lenses, nanoprobes, selenium nanobells, nanosponge, polymeric micelles, silver nanoparticles, and gold nanoparticles among others have been developed to circumvent the limitations associated with the conventional dosage forms. These nanocarriers have been shown to achieve enhanced drug permeation or retention and prolong drug release in the ocular tissue due to their better tissue adherence. The surface charge and the size of nanocarriers (10-1000 nm) are the important key factors to overcome ocular barriers. Various nanocarriers have been shown to deliver active therapeutic molecules including timolol maleate, ampicillin, natamycin, voriconazole, cyclosporine A, dexamethasone, moxifloxacin, and fluconazole among others for the treatment of anterior and posterior eye diseases. Taken together, in a nutshell, this extensive review provides a comprehensive perspective on the numerous facets of ocular drug delivery with a special focus on bioactive nanocarrier-based approaches, including the difficulties and constraints involved in the fabrication of nanocarriers. This also provides the detailed invention, applications, biodistribution and safety-toxicity of nanocarriers-based therapeutcis for the ophthalmic delivery.


Asunto(s)
Administración Oftálmica , Sistemas de Liberación de Medicamentos , Oftalmopatías , Nanopartículas , Animales , Humanos , Disponibilidad Biológica , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Ojo/metabolismo , Ojo/efectos de los fármacos , Oftalmopatías/tratamiento farmacológico , Sistema de Administración de Fármacos con Nanopartículas/química , Nanopartículas/química
10.
Drug Discov Today ; 29(5): 103954, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531423

RESUMEN

The dry powder inhaler (DPI) stands out as a highly patient-friendly and effective pulmonary formulation, surpassing traditional and other pulmonary dosage forms in certain disease conditions. The development of DPI products, however, presents more complexities than that of other dosage forms, particularly in device design and the integration of the drug formulation. This review focuses on the capabilities of DPI devices in pulmonary drug delivery, with a special emphasis on device design and formulation development. It also discusses into the principles of deep lung particle deposition and device engineering, and provides a current overview of the market for DPI devices. Furthermore, the review highlights the use of computational fluid dynamics (CFD) in DPI product design and discusses the regulatory environment surrounding these devices.


Asunto(s)
Sistemas de Liberación de Medicamentos , Inhaladores de Polvo Seco , Diseño de Equipo , Humanos , Administración por Inhalación , Hidrodinámica
11.
Drug Discov Today ; 29(8): 104060, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38866357

RESUMEN

The application of nanotechnology has significantly advanced the development of novel platforms that enhance disease treatment and diagnosis. A key innovation in this field is the creation of antitoxin nanoparticles (ATNs), designed to address toxin exposure. These precision-engineered nanosystems have unique physicochemical properties and selective binding capabilities, allowing them to effectively capture and neutralize toxins from various biological, chemical, and environmental sources. In this review, we thoroughly examine their therapeutic and diagnostic potential for managing toxin-related challenges. We also explore recent advancements and offer critical insights into the design and clinical implementation of ATNs.


Asunto(s)
Nanopartículas , Humanos , Animales , Antitoxinas/uso terapéutico , Antitoxinas/química , Antitoxinas/farmacología , Nanotecnología/métodos , Diseño de Fármacos
12.
Drug Discov Today ; 29(8): 104098, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38997002

RESUMEN

Block copolymer micelles, formed by the self-assembly of amphiphilic polymers, address formulation challenges, such as poor drug solubility and permeability. These micelles offer advantages including a smaller size, easier preparation, sterilization, and superior solubilization, compared with other nanocarriers. Preclinical studies have shown promising results, advancing them toward clinical trials. Their mucoadhesive properties enhance and prolong contact with the ocular surface, and their small size allows deeper penetration through tissues, such as the cornea. Additionally, copolymeric micelles improve the solubility and stability of hydrophobic drugs, sustain drug release, and allow for surface modifications to enhance biocompatibility. Despite these benefits, long-term stability remains a challenge. In this review, we highlight the preclinical performance, structural frameworks, preparation techniques, physicochemical properties, current developments, and prospects of block copolymer micelles as ocular drug delivery systems.


Asunto(s)
Administración Oftálmica , Sistemas de Liberación de Medicamentos , Micelas , Polímeros , Humanos , Sistemas de Liberación de Medicamentos/métodos , Polímeros/química , Animales , Portadores de Fármacos/química , Solubilidad
13.
Int J Biol Macromol ; 264(Pt 2): 130728, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467209

RESUMEN

Exosomes (EXOs), membranous structures originating from diverse biological sources, have recently seized the attention of researchers due to their theranostic potential for neurological diseases. Released actively by various cells, including stem cells, adipose tissue, and immune cells, EXOs wield substantial regulatory influence over the intricate landscape of neurological complications, exhibiting both positive and negative modulatory effects. In AD, EXOs play a pivotal role in disseminating and breaking down amyloid-ß protein. Moreover, EXOs derived from mesenchymal stem cells showcase a remarkable capacity to mitigate pro-inflammatory phenotypes by regulating miRNAs in neurodegenerative diseases. These vesicles possess the unique ability to traverse the blood-brain barrier, governing the aggregation of mutant huntingtin protein. Understanding the exosomal functions within the CNS holds significant promise for enhancing treatment efficacy in neurological diseases. This review intricately examines the regulatory mechanisms involving EXOs in neurological disease development, highlighting therapeutic prospects and exploring their utility in exosome-based nanomedicine for various neurological complications. Additionally, the review highlights the challenges associated with drug delivery to the brain, emphasizing the complexities inherent in this critical aspect of neurotherapeutics.


Asunto(s)
Exosomas , MicroARNs , Enfermedades del Sistema Nervioso , Humanos , Exosomas/metabolismo , MicroARNs/genética , Péptidos beta-Amiloides/metabolismo , Progresión de la Enfermedad
14.
Artículo en Inglés | MEDLINE | ID: mdl-39356645

RESUMEN

The increasing popularity of prolonged-release dosage forms, owing to their ability to provide continuous drug release after administration, has significantly improved patient compliance and overall quality of life. However, achieving prolonged release beyond 24 h frequently requires the use of invasive methods, including injections or implants, which may prove challenging for people suffering from needle phobia. This study introduces atorvastatin (ATR) microparticles (MPs) or nanocrystal (NCs) dissolving microarray patches (D-MAPs) as a noninvasive alternative for intradermal drug delivery over a two-week period for the management of hyperlipidemia. The MP-loaded D-MAPs exhibited an average drug loading of 5.15 ± 0.4 mg of ATR per patch, surpassing the 2.4 ± 0.11 mg/patch observed with NC-loaded D-MAPs. Skin deposition studies demonstrated the superior performance of MP D-MAPs, which delivered 2.0 ± 0.33 mg of ATR per 0.75 cm2 patch within 24 h, representing 38.76% of the initial amount of drug loaded. In contrast, NC D-MAPs delivered approximately 0.89 ± 0.12 mg of ATR per 0.75 cm2 patch at 24 h, equivalent to 38.42 ± 5.13% of the initial ATR loaded. Due to their favorable results, MP D-MAPs were chosen for an in vivo study using Sprague-Dawley rats. The findings demonstrated the capacity of D-MAPs to deliver and attain therapeutically relevant ATR concentrations (>20 ng/mL) for 14 days after a single 24-h application. This study is the first to successfully demonstrate the long-acting transdermal delivery of ATR using MP-loaded D-MAPs after a 24-h single-dose application. The innovative D-MAP system, particularly when loaded with MP, arises as a promising, minimally invasive, long-acting substitute for ATR delivery. This technology has the potential to improve patient compliance and therapeutic outcomes while also significantly advancing the field of transdermal drug delivery.

15.
Int J Pharm ; 665: 124691, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39278288

RESUMEN

Hyperlipidemia and its associated cardiovascular complications are the major causes of mortality and disability worldwide. Simvastatin (SIM) is one of the most commonly prescribed lipid-lowering drugs for the treatment of hyperlipidemia by competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. However, the extensive first-pass metabolism leading to low oral bioavailability and frequent daily doses may lead to poor patient compliance and adverse effects caused by plasma fluctuations. To overcome these challenges, this work purposed two microneedle (MN) delivery strategies for the potential enhancement of SIM delivery. Firstly, nanocrystal (NC) formulations of SIM were investigated, followed by incorporation into a trilayer dissolving microneedle (DMN) design. Furthermore, a novel effervescent powder-carrying MN (EMN) design was developed to enhance intradermal delivery by incorporating the effervescent agents into the drug powder. Both MN approaches exhibited significantly improved permeation and in-skin deposition ability in the Franz cell study, with the ex vivo delivery efficiency of 64.33 ± 6.17 % and 40.11 ± 4.53 % for EMNs and DMNs, respectively. Most importantly, in vivo studies using a female Sprague-Dawley rat model confirmed the successful delivery of SIM from NCs-loaded DMNs (Cmax = 287.39 ± 106.82 ng/mL) and EMNs (Cmax = 203.05 ± 17.07 ng/mL) and maintain therapeutically relevant plasma concentrations for 15 days following a single application. The enhanced bioavailabilities of DMNs and EMNs were 24.28 % and 103.82 %, respectively, which were both significantly higher than that of conventional oral administration.


Asunto(s)
Nanopartículas , Agujas , Polvos , Ratas Sprague-Dawley , Simvastatina , Animales , Simvastatina/administración & dosificación , Simvastatina/farmacocinética , Simvastatina/química , Femenino , Sistemas de Liberación de Medicamentos , Ratas , Administración Cutánea , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacocinética , Absorción Cutánea , Piel/metabolismo , Preparaciones de Acción Retardada
16.
J Control Release ; 372: 304-317, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906420

RESUMEN

Parkinson's disease (PD), affecting about ten million people globally, presents a significant health challenge. Rotigotine (RTG), a dopamine agonist, is currently administered as a transdermal patch (Neupro®) for PD treatment, but the daily application can be burdensome and cause skin irritation. This study introduces a combinatorial approach of dissolving microarray patch (MAP) and nanosuspension (NS) for the transdermal delivery of RTG, offering an alternative to Neupro®. The RTG-NS was formulated using a miniaturized media milling method, resulting in a nano-formulation with a mean particle size of 274.09 ± 7.43 nm, a PDI of 0.17 ± 0.04 and a zeta potential of -15.24 ± 2.86 mV. The in vitro dissolution study revealed an enhanced dissolution rate of the RTG-NS in comparison to the coarse RTG powder, under sink condition. The RTG-NS MAPs, containing a drug layer and a 'drug-free' supporting baseplate, have a drug content of 3.06 ± 0.15 mg/0.5 cm2 and demonstrated greater amount of drug delivered per unit area (∼0.52 mg/0.5 cm2) than Neupro® (∼0.20 mg/1 cm2) in an ex vivo Franz cell study using full-thickness neonatal porcine skin. The in vivo pharmacokinetic studies demonstrated that RTG-NS MAPs, though smaller (2 cm2 for dissolving MAPs and 6 cm2 for Neupro®), delivered drug levels comparable to Neupro®, indicating higher efficiency per unit area. This could potentially avoid unnecessarily high plasma levels after the next dose at 24 h, highlighting the benefits of dissolving MAPs over conventional transdermal patches in PD treatment.


Asunto(s)
Administración Cutánea , Agonistas de Dopamina , Nanopartículas , Absorción Cutánea , Tetrahidronaftalenos , Tiofenos , Parche Transdérmico , Animales , Tiofenos/administración & dosificación , Tiofenos/farmacocinética , Tiofenos/química , Tetrahidronaftalenos/administración & dosificación , Tetrahidronaftalenos/farmacocinética , Tetrahidronaftalenos/química , Agonistas de Dopamina/administración & dosificación , Agonistas de Dopamina/farmacocinética , Agonistas de Dopamina/química , Nanopartículas/química , Porcinos , Suspensiones , Piel/metabolismo , Liberación de Fármacos , Masculino , Solubilidad , Tamaño de la Partícula
17.
Int J Pharm ; 664: 124614, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39168286

RESUMEN

Deferasirox (DFS) is an oral iron chelator that is employed in retinal ailments as a neuroprotectant against retinal injury and thus has utility in treating disorders such as excitoneurotoxicity and age-related macular degeneration (AMD). However, the conventional oral route of administration can present several disadvantages, e.g., the need for more frequent dosing and the first-pass effect. Microneedles (MNs) are minimally invasive systems that can be employed for intrascleral drug delivery without pain and can advantageously replace intravitreal injections therapy (IVT) as well as conventional oral routes of delivery for DFS. In this study, DFS was formulated into a nanosuspension (NS) through wet media milling employing PVA as a stabilizer, which was successfully loaded into polymeric dissolving MNs. DFS exhibited a 4-fold increase in solubility in DFS-NS compared to that of pure DFS. Moreover, the DFS-NSs exhibited excellent short-term stability and enhanced thermal stability, as confirmed through thermogravimetric analysis (TGA) studies. The mechanical characterization of the DFS-NS loaded ocular microneedles (DFS-NS-OcMNs), revealed that the system was sufficiently strong for effective scleral penetration. Optical coherence tomography (OCT) images confirmed the insertion of 81.23 ± 7.35 % of the total height of the MN arrays into full-thickness porcine sclera. Scleral deposition studies revealed 64 % drug deposition after just 5 min of insertion from DFS-NS-loaded ocular microneedles (OcMNs), which was almost 5 times greater than the deposition from pure DFS-OcMNs. Furthermore, both DFS and DFS-NS-OcMN exhibited remarkable cell viability when evaluated on human retinal pigment (ARPE) cells, suggesting their safety and appropriateness for use in the human eye. Therefore, loading DFS-NS into novel MN devices is a promising technique for effectively delivering DFS to the posterior segment of the eye in a minimally invasive manner.


Asunto(s)
Deferasirox , Sistemas de Liberación de Medicamentos , Quelantes del Hierro , Agujas , Deferasirox/administración & dosificación , Deferasirox/farmacocinética , Animales , Porcinos , Quelantes del Hierro/administración & dosificación , Solubilidad , Suspensiones , Esclerótica/metabolismo , Humanos , Epitelio Pigmentado de la Retina/efectos de los fármacos , Nanopartículas/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Línea Celular , Administración Oftálmica , Microinyecciones/métodos , Estabilidad de Medicamentos , Tomografía de Coherencia Óptica
18.
J Control Release ; 371: 43-66, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735395

RESUMEN

Microneedles (MNs) are micron-sized needles, typically <2 mm in length, arranged either as an array or as single needle. These MNs offer a minimally invasive approach to ocular drug delivery due to their micron size (reducing tissue damage compared to that of hypodermic needles) and overcoming significant barriers in drug administration. While various types of MNs have been extensively researched, significant progress has been made in the use of hollow MNs (HMNs) for ocular drug delivery, specifically through suprachoroidal injections. The suprachoroidal space, situated between the sclera and choroid, has been targeted using optical coherence tomography-guided injections of HMNs for the treatment of uveitis. Unlike other MNs, HMNs can deliver larger volumes of formulations to the eye. This review primarily focuses on the use of HMNs in ocular drug delivery and explores their ocular anatomy and the distribution of formulations following potential HMN administration routes. Additionally, this review focuses on the influence of formulation characteristics (e.g., solution viscosity, particle size), HMN properties (e.g., bore or lumen diameter, MN length), and routes of administration (e.g., periocular transscleral, suprachoroidal, intravitreal) on the ocular distribution of drugs. Overall, this paper highlights the distinctive properties of HMNs, which make them a promising technology for improving drug delivery efficiency, precision, and patient outcomes in the treatment of ocular diseases.


Asunto(s)
Administración Oftálmica , Sistemas de Liberación de Medicamentos , Ojo , Agujas , Humanos , Animales , Ojo/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Microinyecciones/métodos , Microinyecciones/instrumentación
19.
J Ethnopharmacol ; 330: 118180, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38614262

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Aromatherapy, a holistic healing practice utilizing the aromatic essences of plant-derived essential oils, has gained significant attention for its therapeutic potential in promoting overall well-being. Use of phytoconstituent based essential oil has played a significant role in the evolving therapeutic avenue of aromatherapy as a complementary system of medicine. AIM OF THE STUDY: This comprehensive review article aims to explore the usage of essential oils for aromatherapy, shedding light on their diverse applications, scientific evidence, and safety considerations. Furthermore, the growing interest in using essential oils as complementary therapies in conjunction with conventional medicine is explored, underscoring the significance of collaborative healthcare approaches. MATERIALS AND METHODS: Literature search was performed from databases like PubMed, ScienceDirect, Scopus, and Bentham using keywords like Aromatherapy, Aromatic Plants, Essential oils, Phytotherapy, and complementary medicine. The keywords were used to identify literature with therapeutic and mechanistic details of herbal agents with desired action. RESULTS: The integration of traditional knowledge with modern scientific research has led to a renewed interest in essential oils as valuable tools in contemporary healthcare. Various extraction methods used to obtain essential oils are presented, emphasizing their impact on the oil's chemical composition and therapeutic properties. Additionally, the article scrutinizes the factors influencing the quality and purity of essential oils, elucidating the significance of standardization and certification for safe usage. A comprehensive assessment of the therapeutic effects of essential oils is provided, encompassing their potential as antimicrobial, analgesic, anxiolytic, and anti-inflammatory agents, among others. Clinical trials and preclinical studies are discussed to consolidate the existing evidence on their efficacy in treating diverse health conditions, both physical and psychological. Safety considerations are of paramount importance when employing essential oils, and this review addresses potential adverse effects, contraindications, and best practices to ensure responsible usage. CONCLUSIONS: This comprehensive review provides valuable insights into the exploration of essential oils for aromatherapy, emphasizing their potential as natural and potent remedies for a wide range of ailments. By amalgamating traditional wisdom and modern research, this article aims to encourage further investigation into the therapeutic benefits of essential oils while advocating for their responsible and evidence-based incorporation into healthcare practices.


Asunto(s)
Aromaterapia , Aceites Volátiles , Aceites Volátiles/uso terapéutico , Aromaterapia/métodos , Humanos , Animales
20.
Pharmaceutics ; 16(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38794339

RESUMEN

Levodopa (LD) has been the most efficacious medication and the gold standard therapy for Parkinson's disease (PD) for decades. However, its long-term administration is usually associated with motor complications, which are believed to be the result of the fluctuating pharmacokinetics of LD following oral administration. Duodopa® is the current option to offer a continuous delivery of LD and its decarboxylase inhibitor carbidopa (CD); however, its administration involves invasive surgical procedures, which could potentially lead to lifelong complications, such as infection. Recently, dissolving microarray patches (MAPs) have come to the fore as an alternative that can bypass the oral administration route in a minimally invasive way. This work explored the potential of using dissolving MAPs to deliver LD and CD across the skin. An acidic polymer poly(acrylic acid) (PAA) was used in the MAP fabrication to prevent the potential oxidation of LD at neutral pH. The drug contents of LD and CD in the formulated dissolving MAPs were 1.82 ± 0.24 and 0.47 ± 0.04 mg/patch, respectively. The in vivo pharmacokinetic study using female Sprague-Dawley® rats (Envigo RMS Holding Corp, Bicester, UK) demonstrated a simultaneous delivery of LD and CD and comparable AUC values between the dissolving MAPs and the oral LD/CD suspension. The relative bioavailability for the dissolving MAPs was calculated to be approximately 37.22%. Accordingly, this work highlights the use of dissolving MAPs as a minimally invasive approach which could potentially bypass the gastrointestinal pathway and deliver both drugs continuously without surgery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA