Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34635581

RESUMEN

The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered covalent small-molecule ketobenzothiazole (kbt) TMPRSS2 inhibitors which are structurally distinct from and have significantly improved activity over the existing known inhibitors Camostat and Nafamostat. Lead compound MM3122 (4) has an IC50 (half-maximal inhibitory concentration) of 340 pM against recombinant full-length TMPRSS2 protein, an EC50 (half-maximal effective concentration) of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV-SARS-CoV-2 chimeric virus, and an EC50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East respiratory syndrome coronavirus (MERS-CoV) cell entry with an EC50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice, with a half-life of 8.6 h in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.


Asunto(s)
Benzotiazoles/farmacología , Tratamiento Farmacológico de COVID-19 , Oligopéptidos/farmacología , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/genética , Animales , Benzamidinas/química , Benzotiazoles/farmacocinética , COVID-19/genética , COVID-19/virología , Línea Celular , Diseño de Fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Ésteres/química , Guanidinas/química , Humanos , Pulmón/efectos de los fármacos , Pulmón/virología , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Oligopéptidos/farmacocinética , SARS-CoV-2/patogenicidad , Serina Endopeptidasas/efectos de los fármacos , Serina Endopeptidasas/ultraestructura , Bibliotecas de Moléculas Pequeñas/farmacología , Especificidad por Sustrato/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
2.
Reproduction ; 156(1): 35-46, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29743262

RESUMEN

The testis is an organ that maintains an immune suppressive environment. We previously revealed that exposure of pre-pubertal rats to an acute dose of a well-described Sertoli cell toxicant, mono-(2-ethylhexyl) phthalate (MEHP), leads to an accumulation of CD11b+ immune cells in the testicular interstitial space that closely correlates with a robust incidence of germ cell (GC) apoptosis. Here, we test the hypothesis that the infiltrating immune cells contribute to GC apoptosis. Postnatal day 28 Fischer rats that received an oral dose of 700 mg/kg MEHP showed a significant infiltration of both CD11bc+/CD68+/CD163- macrophages and neutrophils. The infiltration peaked at 12 h, but had reduced by 48 h. Testicular macrophages from MEHP-treated rats showed significantly upregulated expression of Tnfa and Il6, and the Arg1/Nos2 ratio was reduced compared to controls. However, small increases in anti-inflammatory genes Il10 and Tgfb1 were also observed. Depletion of circulating monocytes with clodronate liposomes prior to MEHP treatment reduced the macrophage influx into the testis, but did not lower GC apoptosis. Additionally, depletion of neutrophils using an anti-polymorphonuclear cell antibody prevented both macrophage and neutrophil infiltration into the testis, and also did not affect GC apoptosis. Together, these results show that exposure to MEHP leads to a rapid and temporary influx of pro-inflammatory monocytes and neutrophils in the interstitium of the testis. However, with this acute dosing paradigm, these infiltrating leukocytes do not appear to contribute to MEHP-induced testicular GC apoptosis leaving the functional significance of these infiltrating cells in the pathogenesis of MEHP-induced testicular injury unresolved.


Asunto(s)
Apoptosis/efectos de los fármacos , Dietilhexil Ftalato/análogos & derivados , Orquitis/patología , Espermatozoides/efectos de los fármacos , Testículo/efectos de los fármacos , Animales , Dietilhexil Ftalato/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratas , Espermatozoides/patología , Testículo/patología
3.
Adv Exp Med Biol ; 930: 51-88, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27558817

RESUMEN

Although apoptosis is well recognized as a cell death program with clear anticancer roles, accumulating evidence linking apoptosis with tissue repair and regeneration indicates that its relationship with malignant disease is more complex than previously thought. Here we review how the responses of neighboring cells in the microenvironment of apoptotic tumor cells may contribute to the cell birth/cell death disequilibrium that provides the basis for cancerous tissue emergence and growth. We describe the bioactive properties of apoptotic cells and consider, in particular, how apoptosis of tumor cells can engender a range of responses including pro-oncogenic signals having proliferative, angiogenic, reparatory, and immunosuppressive features. Drawing on the parallels between wound healing, tissue regeneration and cancer, we propose the concept of the "onco-regenerative niche," a cell death-driven generic network of tissue repair and regenerative mechanisms that are hijacked in cancer. Finally, we consider how the responses to cell death in tumors can be targeted to provide more effective and long-lasting therapies.


Asunto(s)
Muerte Celular/fisiología , Neoplasias/patología , Microambiente Tumoral/fisiología , Animales , Apoptosis/fisiología , Autofagia/fisiología , División Celular/fisiología , Hipoxia de la Célula , Humanos , Inmunoterapia , Macrófagos/fisiología , Terapia Molecular Dirigida , Proteínas de Neoplasias/fisiología , Neoplasias/fisiopatología , Neoplasias/terapia , Células Madre Neoplásicas/fisiología , Neovascularización Patológica/fisiopatología , Regeneración/fisiología , Transducción de Señal/fisiología , Nicho de Células Madre , Cicatrización de Heridas/fisiología
4.
Pharmacoecon Open ; 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39154309

RESUMEN

INTRODUCTION: Incidence and mortality for bladder cancer has changed very little over the past 20 years. Approximately 40% of patients with high-risk nonmuscle invasive bladder cancer eventually recur/progress. It is important to understand the economic impact of disease recurrence/progression in bladder cancer. Our aim was to estimate and understand the direct costs associated with the treatment of bladder cancer from the payer's perspective in the USA, in the year of 2021, including costs for both newly diagnosed bladder cancer (stages 0a-IV) and recurrent patients. METHODS: An economic model was constructed to calculate the number of patients receiving each treatment modality at every stage of disease and their respective costs. Epidemiological data were based on the CancerMPact Patient Metrics (PM) database and treatment modality data retrieved from CMP Treatment Architecture (TA), 2021 version. Resource utilization and costs were obtained from medical literature and public data sources. Only direct costs were considered. RESULTS: There were an estimated 83,532 newly diagnosed patients with bladder cancer of all stages in 2021 with a projected total cost of treatment of ~$2.6 billion. Average cost per newly diagnosed patient varied from $19,521 (stage 0a) to $169,533 (metastatic disease). Cost profile differed substantially among the stages of disease. For the 75,760 patients that were expected to have a recurrence in 2021, an additional cost of ~$3.9 billion was estimated at an average cost per patient of $52,179. The expected total cost to treat newly diagnosed and newly recurrent patients is reported in this model, with the total cost in 2021 estimated to exceed $6.5 billion. CONCLUSIONS: Treatment and resource costs increase for bladder cancer as the disease recurs/progresses. More effective treatments that can delay recurrence/progression may reduce the economic burden associated with bladder cancer.


The costs of treating bladder cancer in the USA are high, expected to have exceeded $6.5 billion in the year 2021. The average cost for newly diagnosed patients ranges from $19,521 for the earliest stage of disease to $169,533 for metastatic disease. Average costs per patient increase upon disease recurrence and more effective initial treatments to delay disease recurrence or progression may reduce the costs associated with bladder cancer.

5.
Toxicol Sci ; 182(2): 288-296, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34010400

RESUMEN

Peripubertal exposure of male rodents to the phthalate metabolite mono-(2-ethylhexyl) phthalate (MEHP) causes testicular inflammation, spermatocyte apoptosis, and disruption of the blood-testis barrier. The MEHP-induced inflammatory response in the testis includes an infiltration of macrophages and neutrophils, although the cause and purpose of this response is unknown. Recently, a population of testicular macrophages known as peritubular macrophages that are phenotypically distinct from those resident in interstitium was described in mice. Peritubular macrophages aggregate near the spermatogonial stem cell niche and are believed to stimulate their differentiation. We hypothesized that if testicular peritubular macrophages do indeed stimulate spermatogonial differentiation, MEHP exposure would result in an increase of peritubular macrophages to stimulate the replacement of lost spermatocytes. Male rats were exposed to 700 mg/kg MEHP or corn oil (vehicle control) via oral gavage at postnatal day 28 and euthanized at 48 h, 1 or 2 weeks later. Seminiferous tubules were stained with immunofluorescent markers for macrophages (major histocompatibility complex class II [MHC-II+]) and undifferentiated spermatogonia (PLZF). Peritubular macrophages were observed in rat testis: MHC-II+ cells on the surface of seminiferous tubules with heterogeneous morphology. Quantification of MHC-II+ cells revealed that, unlike in the mouse, their numbers did not increase through puberty (2-week period). MEHP increased macrophage presence by 6-fold 48 h after exposure and remained elevated by 2-fold 2 weeks after exposure. An increase of differentiating spermatogonia occurred 2 weeks after MEHP exposure. Taken together, our results suggest that peritubular macrophages play a crucial role in the testis response to acute injury and the subsequent recovery of spermatogenesis.


Asunto(s)
Dietilhexil Ftalato , Testículo , Animales , Dietilhexil Ftalato/análogos & derivados , Dietilhexil Ftalato/toxicidad , Macrófagos , Masculino , Ratones , Ácidos Ftálicos , Ratas , Espermatogonias
6.
J Med Chem ; 64(24): 18158-18174, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34902246

RESUMEN

Hepatocyte growth factor (HGF), the ligand for the MET receptor tyrosine kinase, is a tumor-promoting factor that is abundant in the tumor microenvironment. Proteolytic activation of inactive pro-HGF by one or more of the serine endopeptidases matriptase, hepsin, and HGF activator is the rate-limiting step in HGF/MET signaling. Herein, we have rationally designed a novel class of side chain cyclized macrocyclic peptide inhibitors. The new series of cyclic tripeptides has superior metabolic stability and significantly improved pharmacokinetics in mice relative to the corresponding linear peptides. We identified the lead compound VD2173 that potently inhibits matriptase and hepsin, which was tested in parallel alongside the acyclic inhibitor ZFH7116 using both in vitro and in vivo models of lung cancer. We demonstrated that both compounds block pro-HGF activation, abrogate HGF-mediated wound healing, and overcome resistance to EGFR- and MET-targeted therapy in lung cancer models. Furthermore, VD2173 inhibited HGF-dependent growth of lung cancer tumors in mice.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Factor de Crecimiento de Hepatocito/metabolismo , Neoplasias Pulmonares/patología , Compuestos Macrocíclicos/farmacología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Progresión de la Enfermedad , Descubrimiento de Drogas , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Compuestos Macrocíclicos/sangre , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/uso terapéutico , Ratones , Inhibidores de Serina Proteinasa/sangre , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/uso terapéutico , Relación Estructura-Actividad
7.
bioRxiv ; 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34131661

RESUMEN

The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered a novel class of small molecule ketobenzothiazole TMPRSS2 inhibitors with significantly improved activity over existing irreversible inhibitors Camostat and Nafamostat. Lead compound MM3122 ( 4 ) has an IC 50 of 340 pM against recombinant full-length TMPRSS2 protein, an EC 50 of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV SARS-CoV-2 chimeric virus, and an EC 50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East Respiratory Syndrome Coronavirus (MERS-CoV) cell entry with an EC 50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice with a half-life of 8.6 hours in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.

8.
Reprod Toxicol ; 69: 150-158, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28238932

RESUMEN

Exposure of rodents to the Sertoli cell (SC) toxicant mono-(2-ethylhexyl) phthalate (MEHP) has been reported to trigger an infiltration of macrophages into the testis in an age- and species-dependent manner. Here we challenge the hypothesis that the peripubertal rat-specific infiltration of macrophages after MEHP exposure is due, in part, to an increase in SC-specific inflammatory cytokine expression. To rule out that germ cell(GC) apoptosis itself is responsible for macrophage recruitment, rats were exposed to a direct GC toxicant, methoxyacetic acid (MAA), but no infiltration of macrophages was observed. Next, mRNA levels of inflammatory cytokines were evaluated after MEHP exposure. IL-1α, IL-6, and MCP-1 expression were increased in vivo and correlated with macrophage infiltration in a species-specific manner. Additionally, IL-6 and MCP-1 expression was increased in SC-GC co-cultures and ASC-17D SCs. These results indicate that MEHP-injury in pubertal rats specifically stimulates secretion of pro-inflammatory cytokines and alters the immune microenvironment.


Asunto(s)
Citocinas/genética , Dietilhexil Ftalato/análogos & derivados , Disruptores Endocrinos/toxicidad , Células de Sertoli/efectos de los fármacos , Acetatos/toxicidad , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Células Cultivadas , Dietilhexil Ftalato/toxicidad , Macrófagos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Ratas Endogámicas F344 , Células de Sertoli/inmunología , Especificidad de la Especie
9.
Cell Death Differ ; 24(6): 971-983, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28157210

RESUMEN

In aggressive non-Hodgkin's lymphoma (NHL), constitutive apoptosis of a proportion of the tumor cell population can promote net tumor growth. This is associated with the accumulation of tumor-associated macrophages (TAMs) that clear apoptotic cells and exhibit pro-oncogenic transcriptional activation profiles characteristic of reparatory, anti-inflammatory and angiogenic programs. Here we consider further the activation status of these TAMs. We compare their transcriptomic profile with that of a range of other macrophage types from various tissues noting especially their expression of classically activated (IFN-γ and LPS) gene clusters - typically antitumor - in addition to their previously described protumor phenotype. To understand the impact of apoptotic cells on the macrophage activation state, we cocultured apoptotic lymphoma cells with classically activated macrophages (M(IFN-γ/LPS), also known as M1, macrophages). Although untreated and M(IFN-γ/LPS) macrophages were able to bind apoptotic lymphoma cells equally well, M(IFN-γ/LPS) macrophages displayed enhanced ability to phagocytose them. We found that direct exposure of M(IFN-γ/LPS) macrophages to apoptotic lymphoma cells caused switching towards a protumor activation state (often referred to as M2-like) with concomitant inhibition of antitumor activity that was a characteristic feature of M(IFN-γ/LPS) macrophages. Indeed, M(IFN-γ/LPS) macrophages exposed to apoptotic lymphoma cells displayed increased lymphoma growth-promoting activities. Antilymphoma activity by M(IFN-γ/LPS) macrophages was mediated, in part, by galectin-3, a pleiotropic glycoprotein involved in apoptotic cell clearance that is strongly expressed by lymphoma TAMs but not lymphoma cells. Intriguingly, aggressive lymphoma growth was markedly impaired in mice deficient in galectin-3, suggesting either that host galectin-3-mediated antilymphoma activity is required to sustain net tumor growth or that additional functions of galectin-3 drive key oncogenic mechanisms in NHL. These findings have important implications for anticancer therapeutic approaches aimed at polarizing macrophages towards an antitumor state and identify galectin-3 as a potentially important novel target in aggressive NHL.


Asunto(s)
Apoptosis , Galectina 3/fisiología , Linfoma no Hodgkin/fisiopatología , Macrófagos/fisiología , Transcriptoma , Animales , Técnicas de Cocultivo , Femenino , Galectina 3/metabolismo , Linfoma no Hodgkin/inmunología , Activación de Macrófagos , Macrófagos/metabolismo , Ratones , Fagocitosis
10.
Curr Biol ; 25(5): 577-88, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25702581

RESUMEN

BACKGROUND: Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. RESULTS: Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased "in situ transcriptomics" analysis-gene expression profiling of laser-captured TAMs to establish their activation signature in situ-we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. CONCLUSIONS: In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy.


Asunto(s)
Apoptosis/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Linfoma de Células B/fisiopatología , Fagocitos/fisiología , Transducción de Señal/fisiología , Microambiente Tumoral/fisiología , Análisis de Varianza , Proliferación Celular/fisiología , Fluorescencia , Perfilación de la Expresión Génica , Técnicas Histológicas , Humanos , Estimación de Kaplan-Meier , Macrófagos/fisiología , Metaloproteinasas de la Matriz/metabolismo , Melanoma Experimental/fisiopatología , Neovascularización Patológica/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA