Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Microbiol ; 99(1): 55-70, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26354009

RESUMEN

Mycoplasma mycoides subsp. capri (Mmc) and subsp. mycoides (Mmm) are important ruminant pathogens worldwide causing diseases such as pleuropneumonia, mastitis and septicaemia. They express galactofuranose residues on their surface, but their role in pathogenesis has not yet been determined. The M. mycoides genomes contain up to several copies of the glf gene, which encodes an enzyme catalysing the last step in the synthesis of galactofuranose. We generated a deletion of the glf gene in a strain of Mmc using genome transplantation and tandem repeat endonuclease coupled cleavage (TREC) with yeast as an intermediary host for the genome editing. As expected, the resulting YCp1.1-Δglf strain did not produce the galactofuranose-containing glycans as shown by immunoblots and immuno-electronmicroscopy employing a galactofuranose specific monoclonal antibody. The mutant lacking galactofuranose exhibited a decreased growth rate and a significantly enhanced adhesion to small ruminant cells. The mutant was also 'leaking' as revealed by a ß-galactosidase-based assay employing a membrane impermeable substrate. These findings indicate that galactofuranose-containing polysaccharides conceal adhesins and are important for membrane integrity. Unexpectedly, the mutant strain showed increased serum resistance.


Asunto(s)
Adhesinas Bacterianas/análisis , Actividad Bactericida de la Sangre , Membrana Celular/química , Membrana Celular/fisiología , Disacáridos/análisis , Mycoplasma mycoides/química , Mycoplasma mycoides/fisiología , Animales , Adhesión Bacteriana , Células Cultivadas , Eliminación de Gen , Marcación de Gen , Immunoblotting , Microscopía Inmunoelectrónica , Mycoplasma mycoides/genética , Ovinos
2.
J Clin Microbiol ; 53(2): 528-38, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25472487

RESUMEN

Human infection with Shiga toxin-producing Escherichia coli (STEC) is a major cause of postdiarrheal hemolytic-uremic syndrome (HUS), a life-threatening condition characterized by hemolytic anemia, thrombocytopenia, and acute renal failure. E. coli O157:H7 is the dominant STEC serotype associated with HUS worldwide, although non-O157 STEC serogroups can cause a similar disease. The detection of anti-O157 E. coli lipopolysaccharide (LPS) antibodies in combination with stool culture and detection of free fecal Shiga toxin considerably improves the diagnosis of STEC infections. In the present study, we exploited a bacterial glycoengineering technology to develop recombinant glycoproteins consisting of the O157, O145, or O121 polysaccharide attached to a carrier protein as serogroup-specific antigens for the serological diagnosis of STEC-associated HUS. Our results demonstrate that using these antigens in indirect ELISAs (glyco-iELISAs), it is possible to clearly discriminate between STEC O157-, O145-, and O121-infected patients and healthy children, as well as to confirm the diagnosis in HUS patients for whom the classical diagnostic procedures failed. Interestingly, a specific IgM response was detected in almost all the analyzed samples, indicating that it is possible to detect the infection in the early stages of the disease. Additionally, in all the culture-positive HUS patients, the serotype identified by glyco-iELISAs was in accordance with the serotype of the isolated strain, indicating that these antigens are valuable not only for diagnosing HUS caused by the O157, O145, and O121 serogroups but also for serotyping and guiding the subsequent steps to confirm diagnosis.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/inmunología , Glicoproteínas/inmunología , Síndrome Hemolítico-Urémico/diagnóstico , Serotipificación/métodos , Escherichia coli Shiga-Toxigénica/inmunología , Antígenos Bacterianos/genética , Niño , Preescolar , Ensayo de Inmunoadsorción Enzimática/métodos , Glicoproteínas/genética , Humanos , Inmunoglobulina M/sangre , Lactante , Recién Nacido , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Estudios Retrospectivos , Método Simple Ciego
3.
Appl Environ Microbiol ; 81(3): 1013-23, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25416773

RESUMEN

The formation of biofilms is an important survival strategy allowing rhizobia to live on soil particles and plant roots. Within the microcolonies of the biofilm developed by Rhizobium leguminosarum, rhizobial cells interact tightly through lateral and polar connections, forming organized and compact cell aggregates. These microcolonies are embedded in a biofilm matrix, whose main component is the acidic exopolysaccharide (EPS). Our work shows that the O-chain core region of the R. leguminosarum lipopolysaccharide (LPS) (which stretches out of the cell surface) strongly influences bacterial adhesive properties and cell-cell cohesion. Mutants defective in the O chain or O-chain core moiety developed premature microcolonies in which lateral bacterial contacts were greatly reduced. Furthermore, cell-cell interactions within the microcolonies of the LPS mutants were mediated mostly through their poles, resulting in a biofilm with an altered three-dimensional structure and increased thickness. In addition, on the root epidermis and on root hairs, O-antigen core-defective strains showed altered biofilm patterns with the typical microcolony compaction impaired. Taken together, these results indicate that the surface-exposed moiety of the LPS is crucial for proper cell-to-cell interactions and for the formation of robust biofilms on different surfaces.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Lipopolisacáridos/metabolismo , Antígenos O/metabolismo , Raíces de Plantas/microbiología , Rhizobium leguminosarum/fisiología , Lipopolisacáridos/genética , Datos de Secuencia Molecular , Antígenos O/genética , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/crecimiento & desarrollo , Rhizobium leguminosarum/metabolismo , Análisis de Secuencia de ADN
4.
Mol Microbiol ; 89(1): 14-28, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23679002

RESUMEN

Protein glycosylation was once considered as an eccentricity of a few bacteria. However in the recent years multiple O-glycosylation mechanisms have been identified in bacterial species from the most diverse genera, including various important human pathogens. This review focuses on summarizing the structural diversity, the various pathways and the physiological roles of this post-translational protein modification. We propose a classification of O-glycosylation based on the requirement of an oligosaccharyltransferase (OTase). OTase-dependent glycosylation utilizes an oligosaccharide synthesized on a lipid carrier that is transferred to proteins en bloc by an OTase. Multiple proteins, including the pilins, are glycosylated using this mechanism. OTase-independent glycosylation refers to the pathway in which glycosyltransferases sequentially add monosaccharides onto the target proteins. This pathway is employed for glycosylation of flagella and autotransporters. Both systems play key roles in pathogenesis. Exploiting glycosylation machineries it is now possible to generate glycoconjugates made of different proteins attached to polysaccharides derived from LPS or capsule biosynthesis. These recombinant glycoproteins can be exploited for vaccines and diagnostics of bacterial infections. Furthermore, O-glycosylation systems are promising targets for antibiotic development. Technological advances in MS and NMR will facilitate the discovery of novel glycosylation systems. Likely, the O-glycosylation pathways we currently know constitute just the tip of the iceberg of a still largely uncharacterized bacterial glycosylation world.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Glicosilación , Bacterias/química , Hexosiltransferasas/metabolismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Proteínas de la Membrana/metabolismo
5.
Proc Natl Acad Sci U S A ; 106(32): 13230-5, 2009 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-19666539

RESUMEN

Inhibition of bacterial gene expression by RNase P-directed cleavage is a promising strategy for the development of antibiotics and pharmacological agents that prevent expression of antibiotic resistance. The rise in multiresistant bacteria harboring AAC(6')-Ib has seriously limited the effectiveness of amikacin and other aminoglycosides. We have recently shown that recombinant plasmids coding for external guide sequences (EGS), short antisense oligoribonucleotides (ORN) that elicit RNase P-mediated cleavage of a target mRNA, induce inhibition of expression of aac(6')-Ib and concomitantly induce a significant decrease in the levels of resistance to amikacin. However, since ORN are rapidly degraded by nucleases, development of a viable RNase P-based antisense technology requires the design of nuclease-resistant RNA analog EGSs. We have assayed a variety of ORN analogs of which selected LNA/DNA co-oligomers elicited RNase P-mediated cleavage of mRNA in vitro. Although we found an ideal configuration of LNA/DNA residues, there seems not to be a correlation between number of LNA substitutions and level of activity. Exogenous administration of as low as 50 nM of an LNA/DNA co-oligomer to the hyperpermeable E. coli AS19 harboring the aac(6')-Ib inhibited growth in the presence of amikacin. Our experiments strongly suggest an RNase P-mediated mechanism in the observed antisense effect.


Asunto(s)
Acetiltransferasas/antagonistas & inhibidores , Amicacina/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli/enzimología , Escherichia coli/genética , Ribonucleasa P/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Secuencia de Bases , ADN/metabolismo , Endocitosis/efectos de los fármacos , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Oligonucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
J Immunol Methods ; 428: 9-19, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26608419

RESUMEN

Isolation of single chain antibody fragment (scFv) clones from naïve Tomlinson I+J phage display libraries that specifically bind a small biomarker molecule, L-Carnitine, was performed using iterative affinity selection procedures. L-Carnitine has been described as a conditionally essential nutrient for humans. Abnormally high concentrations of L-Carnitine in urine are related to many health disorders including diabetes mellitus type 2 and lung cancer. ELISA-based affinity characterization results indicate that selectants preferentially bind to L-Carnitine in the presence of key bioselecting component materials and closely related L-Carnitine derivatives. In addition, the affinity results were confirmed using biophysical fluorescence quenching for tyrosine residues in the V segment. Small-scale production of the soluble fragment yielded 1.3mg/L using immunopure-immobilized protein A affinity column. Circular Dichroism data revealed that the antibody fragment (Ab) represents a folded protein that mainly consists of ß-sheets. These novel antibody fragments may find utility as molecular affinity interface receptors in various electrochemical biosensor platforms to provide specific L-Carnitine binding capability with potential applications in metabolomic devices for companion diagnostics and personalized medicine applications. It may also be used in any other biomedical application where detection of the L-Carnitine level is important.


Asunto(s)
Carnitina/análisis , Carnitina/inmunología , Biblioteca de Péptidos , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/aislamiento & purificación , Reacciones Antígeno-Anticuerpo , Biomarcadores/análisis , Ensayo de Inmunoadsorción Enzimática , Humanos , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Solubilidad
7.
Front Microbiol ; 7: 1608, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27790205

RESUMEN

In natural environments most bacteria live in multicellular structures called biofilms. These cell aggregates are enclosed in a self-produced polymeric extracellular matrix, which protects the cells, provides mechanical stability and mediates cellular cohesion and adhesion to surfaces. Although important advances were made in the identification of the genetic and extracellular factors required for biofilm formation, the mechanisms leading to biofilm matrix assembly, and the roles of extracellular proteins in these processes are still poorly understood. The symbiont Rhizobium leguminosarum requires the synthesis of the acidic exopolysaccharide and the PrsDE secretion system to develop a mature biofilm. PrsDE is responsible for the secretion of the Rap family of proteins that share one or two Ra/CHDL (cadherin-like-) domains. RapA2 is a calcium-dependent lectin with a cadherin-like ß sheet structure that specifically recognizes the exopolysaccharide, either as a capsular polysaccharide (CPS) or in its released form [extracellular polysaccharide (EPS)]. In this study, using gain and loss of function approaches combined with phenotypic and microscopic studies we demonstrated that RapA lectins are involved in biofilm matrix development and cellular cohesion. While the absence of any RapA protein increased the compactness of bacterial aggregates, high levels of RapA1 expanded distances between cells and favored the production of a dense matrix network. Whereas endogenous RapA(s) are predominantly located at one bacterial pole, we found that under overproduction conditions, RapA1 surrounded the cell in a way that was reminiscent of the capsule. Accordingly, polysaccharide analyses showed that the RapA lectins promote CPS formation at the expense of lower EPS production. Besides, polysaccharide analysis suggests that RapA modulates the EPS size profile. Collectively, these results show that the interaction of RapA lectins with the polysaccharide is involved in rhizobial biofilm matrix assembly and remodeling.

8.
Methods Mol Biol ; 1321: 57-70, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26082215

RESUMEN

The biotechnological relevance of protein glycosylation has exponentially grown in recent years. With the advances in protein glycosylation research, new possibilities for glyco-engineering have arisen, and a wide array of glycans can be designed and potentially transferred to target proteins in the biotechnologically relevant host Escherichia coli. Here we provide insight on how to select the best strains and plasmids. We also describe methods for determination of glycan expression and assembly, protein glycosylation using western blot, and preparation of samples for mass spectrometry.


Asunto(s)
Proteínas Bacterianas/genética , Escherichia coli/genética , Antígenos O/genética , Vacunas/genética , Glicosilación , Plásmidos/genética , Polisacáridos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA