Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nat Commun ; 8(1): 226, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28790300

RESUMEN

G protein-coupled receptors (GPCRs) constitute the largest family of cell surface receptors. They can exist and act as dimers, but the requirement of dimers for agonist-induced signal initiation and structural dynamics remains largely unknown. Frizzled 6 (FZD6) is a member of Class F GPCRs, which bind WNT proteins to initiate signaling. Here, we show that FZD6 dimerizes and that the dimer interface of FZD6 is formed by the transmembrane α-helices four and five. Most importantly, we present the agonist-induced dissociation/re-association of a GPCR dimer through the use of live cell imaging techniques. Further analysis of a dimerization-impaired FZD6 mutant indicates that dimer dissociation is an integral part of FZD6 signaling to extracellular signal-regulated kinases1/2. The discovery of agonist-dependent dynamics of dimers as an intrinsic process of receptor activation extends our understanding of Class F and other dimerizing GPCRs, offering novel targets for dimer-interfering small molecules.Frizzled 6 (FZD6) is a G protein-coupled receptor (GPCR) involved in several cellular processes. Here, the authors use live cell imaging and spectroscopy to show that FZD6 forms dimers, whose association is regulated by WNT proteins and that dimer dissociation is crucial for FZD6 signaling.


Asunto(s)
Receptores Frizzled/metabolismo , Dimerización , Células HEK293 , Humanos , Proteína Wnt-5a/metabolismo
2.
Elife ; 52016 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-27664419

RESUMEN

Flagella are crucial for bacterial motility and pathogenesis. The flagellar capping protein (FliD) regulates filament assembly by chaperoning and sorting flagellin (FliC) proteins after they traverse the hollow filament and exit the growing flagellum tip. In the absence of FliD, flagella are not formed, resulting in impaired motility and infectivity. Here, we report the 2.2 Å resolution X-ray crystal structure of FliD from Pseudomonas aeruginosa, the first high-resolution structure of any FliD protein from any bacterium. Using this evidence in combination with a multitude of biophysical and functional analyses, we find that Pseudomonas FliD exhibits unexpected structural similarity to other flagellar proteins at the domain level, adopts a unique hexameric oligomeric state, and depends on flexible determinants for oligomerization. Considering that the flagellin filaments on which FliD oligomers are affixed vary in protofilament number between bacteria, our results suggest that FliD oligomer stoichiometries vary across bacteria to complement their filament assemblies.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Multimerización de Proteína , Pseudomonas aeruginosa/enzimología , Cristalografía por Rayos X , Flagelina/metabolismo , Modelos Moleculares , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA