Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Ann Rheum Dis ; 75(3): 627-31, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26438374

RESUMEN

OBJECTIVES: It has been suggested that the lysosomal recycling process called macro-autophagy plays a role in osteoarthritis development. We thus decided to genetically ablate the autophagy-indispensable Atg5 gene specifically in chondrocytes and analyse the development of osteoarthritis upon aging and in a post-traumatic model. METHODS: Mice lacking the Atg5 gene in their chondrocytes (Atg5cKO) were generated by crossing Atg5-floxed mice with transgenic mice that expressed cre recombinase driven by the collagen type 2 promoter. Animals were analysed at the age of 2, 6 and 12 months for age-related osteoarthritis or underwent mini-open partial medial meniscectomy at 2 months of age and were analysed 1 or 2 months after surgery. We evaluated osteoarthritis using the Osteoarthritis Research Society International (OARSI) scoring on safranin-O-stained samples. Cell death was evaluated by terminal deoxy-nucleotidyl-transferase-mediated deoxy-UTP nick end labelling (TUNEL) and by immunostaining of cleaved caspases. RESULTS: We observed the development of osteoarthritis in Atg5cKO mice with aging including fibrillation and loss of proteoglycans, which was particularly severe in males. The ablation of Atg5 was associated with an increased cell death as assessed by TUNEL, cleaved caspase 3 and cleaved caspase 9. Surprisingly, no difference in the development of post-traumatic osteoarthritis was observed between Atg5cKO and control mice. CONCLUSIONS: Autophagy protects from age-related osteoarthritis by facilitating chondrocyte survival.


Asunto(s)
Autofagia/genética , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Osteoartritis/genética , Animales , Proteína 5 Relacionada con la Autofagia , Cartílago Articular/citología , Caspasas/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Osteoartritis/metabolismo , Proteoglicanos/metabolismo , Lesiones de Menisco Tibial
2.
Autophagy ; 11(9): 1594-607, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26259639

RESUMEN

Mechanistic target of rapamycin (serine/threonine kinase) complex 1 (MTORC1) is a protein-signaling complex at the fulcrum of anabolic and catabolic processes, which acts depending on wide-ranging environmental cues. It is generally accepted that lysosomes facilitate MTORC1 activation by generating an internal pool of amino acids. Amino acids activate MTORC1 by stimulating its translocation to the lysosomal membrane where it forms a super-complex involving the lysosomal-membrane-bound vacuolar-type H(+)-ATPase (v-ATPase) proton pump. This translocation and MTORC1 activation require functional lysosomes. Here we found that, in contrast to this well-accepted concept, in epiphyseal chondrocytes inhibition of lysosomal activity by v-ATPase inhibitors bafilomycin A1 or concanamycin A potently activated MTORC1 signaling. The activity of MTORC1 was visualized by phosphorylated forms of RPS6 (ribosomal protein S6) and EIF4EBP1, 2 well-known downstream targets of MTORC1. Maximal RPS6 phosphorylation was observed at 48-h treatment and reached as high as a 12-fold increase (p < 0.018). This activation of MTORC1 was further confirmed in bone organ culture and promoted potent stimulation of longitudinal growth (p < 0.001). Importantly, the same effect was observed in ATG5 (autophagy-related 5)-deficient bones suggesting a macroautophagy-independent mechanism of MTORC1 inhibition by lysosomes. Thus, our data show that in epiphyseal chondrocytes lysosomes inhibit MTORC1 in a macroautophagy-independent manner and this inhibition likely depends on v-ATPase activity.


Asunto(s)
Autofagia/efectos de los fármacos , Condrocitos/metabolismo , Lisosomas/metabolismo , Macrólidos/farmacología , Complejos Multiproteicos/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Animales , Desarrollo Óseo/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Condrocitos/patología , Hipertrofia , Lisosomas/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Ratas , Proteína S6 Ribosómica/metabolismo , Proteínas Supresoras de Tumor/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo
3.
J Bone Miner Res ; 30(12): 2249-61, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26077727

RESUMEN

Longitudinal bone growth takes place in epiphyseal growth plates located in the ends of long bones. The growth plate consists of chondrocytes traversing from the undifferentiated (resting zone) to the terminally differentiated (hypertrophic zone) stage. Autophagy is an intracellular catabolic process of lysosome-dependent recycling of intracellular organelles and protein complexes. Autophagy is activated during nutritionally depleted or hypoxic conditions in order to facilitate cell survival. Chondrocytes in the middle of the growth plate are hypoxic and nutritionally depleted owing to the avascular nature of the growth plate. Accordingly, autophagy may facilitate their survival. To explore the role of autophagy in chondrocyte survival and constitutional bone growth, we generated mice with cartilage-specific ablation of either Atg5 (Atg5cKO) or Atg7 (Atg7cKO) by crossing Atg5 or Atg7 floxed mice with cartilage-specific collagen type 2 promoter-driven Cre. Both Atg5cKO and Atg7cKO mice showed growth retardation associated with enhanced chondrocyte cell death and decreased cell proliferation. Similarly, inhibition of autophagy by Bafilomycin A1 (Baf) or 3-methyladenine (3MA) promoted cell death in cultured slices of human growth plate tissue. To delineate the underlying mechanisms we employed ex vivo cultures of mouse metatarsal bones and RCJ3.IC5.18 rat chondrogenic cell line. Baf or 3MA impaired metatarsal bone growth associated with processing of caspase-3 and massive cell death. Similarly, treatment of RCJ3.IC5.18 chondrogenic cells by Baf also showed massive cell death and caspase-3 cleavage. This was associated with activation of caspase-9 and cytochrome C release. Altogether, our data suggest that autophagy is important for chondrocyte survival, and inhibition of this process leads to stunted growth and caspase-dependent death of chondrocytes.


Asunto(s)
Caspasas/metabolismo , Condrocitos/citología , Eliminación de Gen , Proteínas Asociadas a Microtúbulos/genética , Adenina/análogos & derivados , Adenina/metabolismo , Animales , Apoptosis , Autofagia , Proteína 5 Relacionada con la Autofagia , Proteína 7 Relacionada con la Autofagia , Muerte Celular , Línea Celular , Proliferación Celular , Supervivencia Celular , Colágeno Tipo II/metabolismo , Citocromos c/metabolismo , Placa de Crecimiento/crecimiento & desarrollo , Humanos , Hipoxia , Inmunohistoquímica , Hibridación in Situ , Macrólidos/metabolismo , Huesos Metatarsianos/metabolismo , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas/genética , Ratas , Enzimas Activadoras de Ubiquitina/genética
4.
Nat Commun ; 5: 3673, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24781502

RESUMEN

Round chondrocytes in the resting zone of the growth plate provide precursors for columnar chondrocytes and have stem-like properties. Here we demonstrate that these stem-like chondrocytes undergo apoptosis in the absence of the receptor (PPR) for parathyroid hormone-related protein. We examine the possible roles of heterotrimeric G-proteins activated by the PPR. Inactivation of the G-protein stimulatory α-subunit (G(s)α) leads to accelerated differentiation of columnar chondrocytes, as seen in the PPR knockout, but a remnant of growth cartilage remains, in contrast to disappearance of the growth cartilage in the PPR knockout. Stem-like chondrocytes lose their quiescence and proliferate upon G(s)α ablation. Inactivation of G(s)α in mice with a mutant PPR that cannot activate G proteins, Gq and G11, leads to a PPR knockout-like phenotype. Thus, G(s)α is the major mediator of the anti-differentiation action of the PPR, while activation of both G(s)α and Gq/11α is required for quiescence of stem-like chondrocytes.


Asunto(s)
Condrocitos/citología , Condrocitos/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Animales , Apoptosis/fisiología , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Genotipo , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Transgénicos , Receptor de Hormona Paratiroídea Tipo 1/genética , Receptor de Hormona Paratiroídea Tipo 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA