Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Plant Cell ; 36(7): 2550-2569, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38513608

RESUMEN

Embryo development in Arabidopsis (Arabidopsis thaliana) starts off with an asymmetric division of the zygote to generate the precursors of the embryo proper and the supporting extraembryonic suspensor. The suspensor degenerates as the development of the embryo proper proceeds beyond the heart stage. Until the globular stage, the suspensor maintains embryonic potential and can form embryos in the absence of the developing embryo proper. We report a mutant called meerling-1 (mrl-1), which shows a high penetrance of suspensor-derived polyembryony due to delayed development of the embryo proper. Eventually, embryos from both apical and suspensor lineages successfully develop into normal plants and complete their life cycle. We identified the causal mutation as a genomic rearrangement altering the promoter of the Arabidopsis U3 SMALL NUCLEOLAR RNA-ASSOCIATED PROTEIN 18 (UTP18) homolog that encodes a nucleolar-localized WD40-repeat protein involved in processing 18S preribosomal RNA. Accordingly, root-specific knockout of UTP18 caused growth arrest and accumulation of unprocessed 18S pre-rRNA. We generated the mrl-2 loss-of-function mutant and observed asynchronous megagametophyte development causing embryo sac abortion. Together, our results indicate that promoter rearrangement decreased UTP18 protein abundance during early stage embryo proper development, triggering suspensor-derived embryogenesis. Our data support the existence of noncell autonomous signaling from the embryo proper to prevent direct reprogramming of the suspensor toward embryonic fate.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mutación , Semillas , Arabidopsis/genética , Arabidopsis/embriología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutación/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , ARN Ribosómico/genética
2.
Nature ; 515(7525): 125-129, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25156253

RESUMEN

During plant growth, dividing cells in meristems must coordinate transitions from division to expansion and differentiation, thus generating three distinct developmental zones: the meristem, elongation zone and differentiation zone. Simultaneously, plants display tropisms, rapid adjustments of their direction of growth to adapt to environmental conditions. It is unclear how stable zonation is maintained during transient adjustments in growth direction. In Arabidopsis roots, many aspects of zonation are controlled by the phytohormone auxin and auxin-induced PLETHORA (PLT) transcription factors, both of which display a graded distribution with a maximum near the root tip. In addition, auxin is also pivotal for tropic responses. Here, using an iterative experimental and computational approach, we show how an interplay between auxin and PLTs controls zonation and gravitropism. We find that the PLT gradient is not a direct, proportionate readout of the auxin gradient. Rather, prolonged high auxin levels generate a narrow PLT transcription domain from which a gradient of PLT protein is subsequently generated through slow growth dilution and cell-to-cell movement. The resulting PLT levels define the location of developmental zones. In addition to slowly promoting PLT transcription, auxin also rapidly influences division, expansion and differentiation rates. We demonstrate how this specific regulatory design in which auxin cooperates with PLTs through different mechanisms and on different timescales enables both the fast tropic environmental responses and stable zonation dynamics necessary for coordinated cell differentiation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/citología , Diferenciación Celular , Movimiento Celular , Regulación de la Expresión Génica de las Plantas , Gravitropismo , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Mitosis , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
3.
Nat Rev Genet ; 14(9): 631-44, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23949543

RESUMEN

Plants, being sessile organisms, need to respond to changing environments, and as a result they have evolved unique signalling mechanisms that allow rapid communication between different parts of the plant. The signalling mechanisms that direct plant development include long-range effectors, such as phytohormones, and molecules with a local intra-organ range, such as peptides, transcription factors and some small RNAs. In this Review, we highlight recent advances in understanding plant signalling mechanisms and discuss how different classes of signalling networks can integrate with gene regulatory networks and contribute to plant development. In some cases, we also address the evolutionary context of mechanisms and discuss possible links between the lifestyle of plants and selection for different signalling mechanisms.


Asunto(s)
Redes Reguladoras de Genes , Desarrollo de la Planta/fisiología , Plantas/genética , Plantas/metabolismo , Transducción de Señal , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Péptidos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/metabolismo
4.
Plant Physiol ; 174(3): 1307-1313, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28546435

RESUMEN

A forward genetic screen is one of the best methods for revealing the function of genes. In plants, this technique is highly efficient, as it is relatively easy to grow and screen hundreds or thousands of individuals. The cost efficiency and ease of data production afforded by next-generation sequencing have created new opportunities for rapid mapping of induced mutations. Current mapping tools are often not user friendly, are complicated, or require extensive preparation steps. To simplify the process of mapping new mutations, we developed a pipeline that takes next-generation sequencing fastq files as input, calls on several well-established and freely available genome-analysis tools, and outputs the most likely causal DNA changes. The pipeline has been validated in Arabidopsis thaliana (Arabidopsis) and can be readily applied to other species, with the possibility of mapping either dominant or recessive mutations.


Asunto(s)
Mapeo Cromosómico/métodos , Mutación Puntual/genética , Alelos , Arabidopsis/genética , Cromosomas de las Plantas/genética , Plantones/genética
5.
PLoS Biol ; 11(11): e1001724, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24302889

RESUMEN

Quiescent long-term somatic stem cells reside in plant and animal stem cell niches. Within the Arabidopsis root stem cell population, the Quiescent Centre (QC), which contains slowly dividing cells, maintains surrounding short-term stem cells and may act as a long-term reservoir for stem cells. The RETINOBLASTOMA-RELATED (RBR) protein cell-autonomously reinforces mitotic quiescence in the QC. RBR interacts with the stem cell transcription factor SCARECROW (SCR) through an LxCxE motif. Disruption of this interaction by point mutation in SCR or RBR promotes asymmetric divisions in the QC that renew short-term stem cells. Analysis of the in vivo role of quiescence in the root stem cell niche reveals that slow cycling within the QC is not needed for structural integrity of the niche but allows the growing root to cope with DNA damage.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Meristema/citología , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proliferación Celular , Técnicas de Silenciamiento del Gen , Meristema/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Nicho de Células Madre , Células Madre/fisiología
6.
New Phytol ; 208(1): 26-38, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25989832

RESUMEN

The root is an excellent model for studying developmental processes that underlie plant anatomy and architecture. Its modular structure, the lack of cell movement and relative accessibility to microscopic visualization facilitate research in a number of areas of plant biology. In this review, we describe several examples that demonstrate how cell type-specific developmental mechanisms determine cell fate and the formation of defined tissues with unique characteristics. In the last 10 yr, advances in genome-wide technologies have led to the sequencing of thousands of plant genomes, transcriptomes and proteomes. In parallel with the development of these high-throughput technologies, biologists have had to establish computational, statistical and bioinformatic tools that can deal with the wealth of data generated by them. These resources provide a foundation for posing more complex questions about molecular interactions, and have led to the discovery of new mechanisms that control phenotypic differences. Here we review several recent studies that shed new light on developmental processes, which are involved in establishing root anatomy and architecture. We highlight the power of combining large-scale experiments with classical techniques to uncover new pathways in root development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas , Fenotipo , Desarrollo de la Planta/genética , Raíces de Plantas/anatomía & histología , Plantas/genética , Genoma de Planta , Raíces de Plantas/crecimiento & desarrollo , Plantas/anatomía & histología
7.
Plant Cell ; 24(9): 3575-89, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23001036

RESUMEN

Interfering with small RNA production is a common strategy of plant viruses. A unique class of small RNAs that require microRNA and short interfering (siRNA) biogenesis for their production is termed trans-acting short interfering RNAs (ta-siRNAs). Tomato (Solanum lycopersicum) wiry mutants represent a class of phenotype that mimics viral infection symptoms, including shoestring leaves that lack leaf blade expansion. Here, we show that four WIRY genes are involved in siRNA biogenesis, and in their corresponding mutants, levels of ta-siRNAs that regulate AUXIN RESPONSE FACTOR3 (ARF3) and ARF4 are reduced, while levels of their target ARFs are elevated. Reducing activity of both ARF3 and ARF4 can rescue the wiry leaf lamina, and increased activity of either can phenocopy wiry leaves. Thus, a failure to negatively regulate these ARFs underlies tomato shoestring leaves. Overexpression of these ARFs in Arabidopsis thaliana, tobacco (Nicotiana tabacum), and potato (Solanum tuberosum) failed to produce wiry leaves, suggesting that the dramatic response in tomato is exceptional. As negative regulation of orthologs of these ARFs by ta-siRNA is common to land plants, we propose that ta-siRNA levels serve as universal sensors for interference with small RNA biogenesis, and changes in their levels direct species-specific responses.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , ARN Interferente Pequeño/genética , Solanum lycopersicum/genética , Alelos , Arabidopsis/anatomía & histología , Arabidopsis/genética , Secuencia de Bases , Sitios Genéticos , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/anatomía & histología , Solanum lycopersicum/fisiología , Datos de Secuencia Molecular , Mutación , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , ARN de Planta/genética , Análisis de Secuencia de ADN , Solanum tuberosum/anatomía & histología , Solanum tuberosum/genética , Especificidad de la Especie , Nicotiana/anatomía & histología , Nicotiana/genética
8.
Plant Cell ; 23(7): 2581-91, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21742994

RESUMEN

Mutations that cause lethality in the gametophyte phase pose a major challenge for studying postfertilization gene function. When both male and female haploid cells require a functional gene copy, null alleles cause developmental arrest before the formation of the zygote, precluding further investigation. The Arabidopsis thaliana Rb homolog RETINOBLASTOMA-RELATED (RBR) has an important function in the stem cell niche, but its requirement in both male and female gametophytes has prevented full loss-of-function studies. To circumvent this obstacle, we designed a clonal deletion system named BOB (Brother of Brainbow) in which null mutant sectors marked by double fluorescence are generated in a fully complemented wild-type background. In this system, both copies of a complementing RBR transgene are eliminated by tissue-specific and inducible CRE expression, and homozygous mutant clones can be distinguished visually. Since mutant sectors can be produced in a homozygous, rather than a heterozygous, background, this system facilitates clonal deletion analysis not only for gametophytic lethal alleles but also for any type of mutation. Using the BOB system, we show that RBR has unique cell-autonomous functions in different cell types within the root stem cell niche.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/fisiología , Prueba de Complementación Genética/métodos , Células Madre/fisiología , Alelos , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Humanos , Óvulo Vegetal/citología , Óvulo Vegetal/fisiología , Raíces de Plantas/citología , Plantas Modificadas Genéticamente , Polen/citología , Polen/fisiología , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Nicho de Células Madre , Células Madre/citología , Distribución Tisular
9.
Science ; 373(6562): 1532-1536, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34446443

RESUMEN

In Arabidopsis, de novo organogenesis of lateral roots is patterned by an oscillatory mechanism called the root clock, which is dependent on unidentified metabolites. To determine whether retinoids regulate the root clock, we used a chemical reporter for retinaldehyde (retinal)­binding proteins. We found that retinal binding precedes the root clock and predicts sites of lateral root organogenesis. Application of retinal increased root clock oscillations and promoted lateral root formation. Expression of an Arabidopsis protein with homology to vertebrate retinoid-binding proteins, TEMPERATURE INDUCED LIPOCALIN (TIL), oscillates in the region of retinal binding to the reporter, confers retinal-binding activity in a heterologous system, and, when mutated, decreases retinal sensitivity. These results demonstrate a role for retinal and its binding partner in lateral root organogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Lipocalinas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Retinaldehído/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Fluorescencia , Lipocalinas/química , Lipocalinas/genética , Meristema/metabolismo , Mutación , Organogénesis de las Plantas , Raíces de Plantas/metabolismo , Unión Proteica , Pirimidinonas/metabolismo , Retinaldehído/farmacología , Transducción de Señal
10.
Sci Adv ; 7(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523850

RESUMEN

In Arabidopsis, the root clock regulates the spacing of lateral organs along the primary root through oscillating gene expression. The core molecular mechanism that drives the root clock periodicity and how it is modified by exogenous cues such as auxin and gravity remain unknown. We identified the key elements of the oscillator (AUXIN RESPONSE FACTOR 7, its auxin-sensitive inhibitor IAA18/POTENT, and auxin) that form a negative regulatory loop circuit in the oscillation zone. Through multilevel computer modeling fitted to experimental data, we explain how gene expression oscillations coordinate with cell division and growth to create the periodic pattern of organ spacing. Furthermore, gravistimulation experiments based on the model predictions show that external auxin stimuli can lead to entrainment of the root clock. Our work demonstrates the mechanism underlying a robust biological clock and how it can respond to external stimuli.

11.
Curr Biol ; 30(3): R121-R122, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32017881

RESUMEN

The development of lateral roots requires multiple mechanisms that act together for accurate spatiotemporal emergence of the new organ. A new paper shows how cell death in overlying endodermis cells contributes to the formation of new lateral root primordia.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Muerte Celular , Raíces de Plantas
12.
Science ; 370(6518): 819-823, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33184208

RESUMEN

In Arabidopsis thaliana, lateral roots initiate in a process preceded by periodic gene expression known as the root clock. We identified the vesicle-trafficking regulator GNOM and its suppressor, ADENOSINE PHOSPHATE RIBOSYLATION FACTOR GTPase ACTIVATION PROTEIN DOMAIN3, as root clock regulators. GNOM is required for the proper distribution of pectin, a mediator of intercellular adhesion, whereas the pectin esterification state is essential for a functional root clock. In sites of lateral root primordia emergence, both esterified and de-esterified pectin variants are differentially distributed. Using a reverse-genetics approach, we show that genes controlling pectin esterification regulate the root clock and lateral root initiation. These results indicate that the balance between esterified and de-esterified pectin states is essential for proper root clock function and the subsequent initiation of lateral root primordia.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Relojes Biológicos/genética , Pared Celular/fisiología , Regulación de la Expresión Génica de las Plantas , Factores de Intercambio de Guanina Nucleótido/fisiología , Pectinas/metabolismo , Raíces de Plantas/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Esterificación/genética , Proteínas de Unión al GTP/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , NADPH Oxidasas/metabolismo , Raíces de Plantas/genética , Vesículas Transportadoras/fisiología
13.
Methods Mol Biol ; 655: 47-64, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20734253

RESUMEN

Targeted gene manipulation has been used in the last few decades for better understanding of gene function. Most often mutant or overexpression genotypes are analyzed, but in many cases these are not sufficient to obtain a detailed picture on the mode of action of the corresponding protein. For example, many mutations result in pleiotropic or early phenotypic effects thereby affecting the whole organism. Conditional complementation or deletion of the gene under study in a specific cell or tissue can elucidate its exact role in a specific region within a certain time frame. Implementation of several site-specific recombination systems such as CRE/lox has created powerful tools to study the role of many genes at the cellular level. In this chapter, we describe in detail protocols for the application of a two-vector based CRE/lox system, enabling controlled timing and position of gain or loss of function clonal analyses.


Asunto(s)
Bacteriófago P1/genética , Clonación de Organismos/métodos , Marcación de Gen/métodos , Vectores Genéticos , Plantas/genética , Recombinación Genética , Secuencia de Bases , Retículo Endoplásmico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA