Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Phys ; 37(10): 5376-81, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21089773

RESUMEN

PURPOSE: Respiration-gated irradiation for a moving target requires a longer time to deliver single fraction in proton radiotherapy (PRT). Ultrahigh dose rate (UDR) proton beam, which is 10-100 times higher than that is used in current clinical practice, has been investigated to deliver daily dose in single breath hold duration. The purpose of this study is to investigate the survival curve and relative biological effectiveness (RBE) of such an ultrahigh dose rate proton beam and their linear energy transfer (LET) dependence. METHODS: HSG cells were irradiated by a spatially and temporally uniform proton beam at two different dose rates: 8 Gy/min (CDR, clinical dose rate) and 325 Gy/min (UDR, ultrahigh dose rate) at the Bragg peak and 1.75 (CDR) and 114 Gy/min (UDR) at the plateau. To study LET dependence, the cells were positioned at the Bragg peak, where the absorbed dose-averaged LET was 3.19 keV/microm, and at the plateau, where it was 0.56 keV/microm. After the cell exposure and colony assay, the measured data were fitted by the linear quadratic (LQ) model and the survival curves and RBE at 10% survival were compared. RESULTS: No significant difference was observed in the survival curves between the two proton dose rates. The ratio of the RBE for CDR/UDR was 0.98 +/- 0.04 at the Bragg peak and 0.96 +/- 0.06 at the plateau. On the other hand, Bragg peak/plateau RBE ratio was 1.15 +/- 0.05 for UDR and 1.18 +/- 0.07 for CDR. CONCLUSIONS: Present RBE can be consistently used in treatment planning of PRT using ultrahigh dose rate radiation. Because a significant increase in RBE toward the Bragg peak was observed for both UDR and CDR, further evaluation of RBE enhancement toward the Bragg peak and beyond is required.


Asunto(s)
Terapia de Protones , Fenómenos Biofísicos , Línea Celular Tumoral , Supervivencia Celular/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Humanos , Transferencia Lineal de Energía , Movimiento (Física) , Neoplasias/radioterapia , Fantasmas de Imagen , Radioterapia de Alta Energía , Efectividad Biológica Relativa , Ensayo de Tumor de Célula Madre
2.
J Appl Glycosci (1999) ; 66(1): 1-9, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-34354514

RESUMEN

We evaluated the stabilities of kojibiose and sophorose when heated under neutral pH conditions. Kojibiose and sophorose epimerized at the C-2 position of glucose on the reducing end, resulting in the production of 2-O-α-D-glucopyranosyl-D-mannose and 2-O-ß-D-glucopyranosyl-D-mannose, respectively. Under weak alkaline conditions, kojibiose was decomposed due to heating into its mono-dehydrated derivatives, including 3-deoxy-2,3-unsaturated compounds and bicyclic 3,6-anhydro compounds. Following these experiments, we propose a kinetic model for the epimerization and decomposition of kojibiose and sophorose by heat treatment under neutral pH and alkaline conditions. The proposed model shows a good fit with the experimental data collected in this study. The rate constants of a reversible epimerization of kojibiose at pH 7.5 and 90 °C were (1.6 ± 0.1) × 10-5 s-1 and (3.2 ± 0.2) × 10-5 s-1 for the forward and reverse reactions, respectively, and were almost identical to those [(1.5 ± 0.1) × 10-5 s-1 and (3.5 ± 0.4) × 10-5 s-1] of sophorose. The rate constant of the decomposition reaction for kojibiose was (4.7 ± 1.1) × 10-7 s-1 whereas that for sophorose [(3.7 ± 0.2) × 10-6 s-1] was about ten times higher. The epimerization reaction was not significantly affected by the variation in the buffer except for a borate buffer, and depended instead upon the pH value (concentration of hydroxide ions), indicating that epimerization occurred as a function of the hydroxide ion. These instabilities are an extension of the neutral pH conditions for keto-enol tautomerization that are often observed under strong alkaline conditions.

3.
J Radiat Res ; 55(4): 816-22, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24824674

RESUMEN

In the clinic, the relative biological effectiveness (RBE) value of 1.1 has usually been used in relation to the whole depth of the spread-out Bragg-peak (SOBP) of proton beams. The aim of this study was to confirm the actual biological effect in the SOBP at the very distal end of clinical proton beams using an in vitro cell system. A human salivary gland tumor cell line, HSG, was irradiated with clinical proton beams (accelerated by 190 MeV/u) and examined at different depths in the distal part and the center of the SOBP. Surviving fractions were analyzed with the colony formation assay. Cell survival curves and the survival parameters were obtained by fitting with the linear-quadratic (LQ) model. The RBE at each depth of the proton SOBP compared with that for X-rays was calculated by the biological equivalent dose, and the biological dose distribution was calculated from the RBE and the absorbed dose at each position. Although the physical dose distribution was flat in the SOBP, the RBE values calculated by the equivalent dose were significantly higher (up to 1.56 times) at the distal end than at the center of the SOBP. Additionally, the range of the isoeffective dose was extended beyond the range of the SOBP (up to 4.1 mm). From a clinical point of view, this may cause unexpected side effects to normal tissues at the distal position of the beam. It is important that the beam design and treatment planning take into consideration the biological dose distribution.


Asunto(s)
Terapia de Protones , Línea Celular Tumoral , Supervivencia Celular/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Humanos , Planificación de la Radioterapia Asistida por Computador , Efectividad Biológica Relativa , Neoplasias de las Glándulas Salivales/patología , Neoplasias de las Glándulas Salivales/radioterapia , Ensayo de Tumor de Célula Madre
4.
J Radiat Res ; 54(5): 798-807, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23449640

RESUMEN

To understand the biological response of normal cells to fractionated carbon beam irradiation, the effects of potentially lethal damage repair (PLDR) and sublethal damage repair (SLDR) were both taken into account in a linear-quadratic (LQ) model. The model was verified by the results of a fractionated cell survival experiment with normal human fibroblast cells. Cells were irradiated with 200-kV X-rays and monoenergetic carbon ion beams (290 MeV/u) at two irradiation depths, corresponding to linear energy transfers (LETs) of approximately 13 keV/µm and 75 keV/µm, respectively, at the Heavy Ion Medical Accelerator in Chiba of the National Institute of Radiological Sciences. When we only took into account the repair factor of PLDR, γ, which was derived from the delayed assay, the cell survival response to fractionated carbon ion irradiation was not fully explained in some cases. When both the effects of SLDR and PLDR were taken into account in the LQ model, the cell survival response was well reproduced. The model analysis suggested that PLDR occurs in any type of radiation. The γ factors ranged from 0.36-0.93. In addition, SLD was perfectly repaired during the fraction interval for the lower LET irradiations but remained at about 30% for the high-LET irradiation.


Asunto(s)
Supervivencia Celular/efectos de la radiación , Daño del ADN/fisiología , Reparación del ADN/fisiología , Fibroblastos/fisiología , Fibroblastos/efectos de la radiación , Radioterapia de Iones Pesados/métodos , Modelos Biológicos , Radioisótopos de Carbono , Línea Celular , Simulación por Computador , Daño del ADN/efectos de la radiación , Fraccionamiento de la Dosis de Radiación , Relación Dosis-Respuesta en la Radiación , Fibroblastos/citología , Iones Pesados , Humanos , Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA