Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Am Chem Soc ; 137(4): 1404-7, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25583142

RESUMEN

Parahydrogen is demonstrated to efficiently transfer its nuclear spin hyperpolarization to nitrogen-15 in pyridine and nicotinamide (vitamin B(3) amide) by conducting "signal amplification by reversible exchange" (SABRE) at microtesla fields within a magnetic shield. Following transfer of the sample from the magnetic shield chamber to a conventional NMR spectrometer, the (15)N NMR signals for these molecules are enhanced by ∼30,000- and ∼20,000-fold at 9.4 T, corresponding to ∼10% and ∼7% nuclear spin polarization, respectively. This method, dubbed "SABRE in shield enables alignment transfer to heteronuclei" or "SABRE-SHEATH", promises to be a simple, cost-effective way to hyperpolarize heteronuclei. It may be particularly useful for in vivo applications because of longer hyperpolarization lifetimes, lack of background signal, and facile chemical-shift discrimination of different species.


Asunto(s)
Hidrógeno/química , Niacinamida/química , Isótopos de Nitrógeno/análisis , Piridinas/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares
2.
J Am Chem Soc ; 136(9): 3322-5, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24528143

RESUMEN

(1)H NMR signal amplification by reversible exchange (SABRE) was observed for pyridine and pyridine-d5 at 9.4 T, a field that is orders of magnitude higher than what is typically utilized to achieve the conventional low-field SABRE effect. In addition to emissive peaks for the hydrogen spins at the ortho positions of the pyridine substrate (both free and bound to the metal center), absorptive signals are observed from hyperpolarized orthohydrogen and Ir-complex dihydride. Real-time kinetics studies show that the polarization build-up rates for these three species are in close agreement with their respective (1)H T1 relaxation rates at 9.4 T. The results suggest that the mechanism of the substrate polarization involves cross-relaxation with hyperpolarized species in a manner similar to the spin-polarization induced nuclear Overhauser effect. Experiments utilizing pyridine-d5 as the substrate exhibited larger enhancements as well as partial H/D exchange for the hydrogen atom in the ortho position of pyridine and concomitant formation of HD molecules. While the mechanism of polarization enhancement does not explicitly require chemical exchange of hydrogen atoms of parahydrogen and the substrate, the partial chemical modification of the substrate via hydrogen exchange means that SABRE under these conditions cannot rigorously be referred to as a non-hydrogenative parahydrogen induced polarization process.


Asunto(s)
Campos Magnéticos , Espectroscopía de Resonancia Magnética/métodos , Piridinas/química , Estudios de Factibilidad , Cinética
3.
Anal Chem ; 86(12): 5601-5, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24738968

RESUMEN

The synthetic protocol for preparation of 1-(13)C-phosphoenolpyruvate-d2, precursor for parahydrogen-induced polarization (PHIP) of 1-(13)C-phospholactate-d2, is reported. (13)C nuclear spin polarization of 1-(13)C-phospholactate-d2 was increased by >30,000,000-fold (5.75 mT) in water. The reported (13)C polarization level approaching unity (>15.6%), long lifetime of (13)C hyperpolarized 1-(13)C-phospholactate-d2 (58 ± 4 s versus 36 ± 2 s for nondeuterated form at 47.5 mT), and large production quantities (52 µmoles in 3 mL) in aqueous medium make this compound useful as a potential contrast agent for the molecular imaging of metabolism and other applications.


Asunto(s)
Hidrógeno/química , Lactatos/química , Espectroscopía de Protones por Resonancia Magnética/métodos , Agua/química
4.
Anal Chem ; 86(13): 6192-6, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24918975

RESUMEN

Parahydrogen-induced polarization (PHIP) was used to demonstrate the concept that highly polarized, catalyst-free fluids can be obtained in a catalysis-free regime using a chemical reaction with molecular addition of parahydrogen to a water-soluble Rh(I) complex carrying a payload of compound with unsaturated (C═C) bonds. Hydrogenation of norbornadiene leads to formation of norbornene, which is eliminated from the Rh(I) complex and, therefore, leaves the aqueous phase and becomes a gaseous hyperpolarized molecule. The Rh(I) metal complex resides in the original liquid phase, while the product of hydrogen addition is found exclusively in the gaseous phase based on the affinity. Hyperpolarized norbornene (1)H NMR signals observed in situ were enhanced by a factor of approximately 10,000 at a static field of 47.5 mT. High-resolution (1)H NMR at a field of 9.4 T was used for ex situ detection of hyperpolarized norbornene in the gaseous phase, where a signal enhancement factor of approximately 160 was observed. This concept of stoichiometric as opposed to purely catalytic use of PHIP-available complexes with an unsaturated payload precursor molecule can be extended to other contrast agents for both homogeneous and heterogeneous PHIP. The Rh(I) complex was employed in aqueous medium suitable for production of hyperpolarized contrast agents for biomedical use. Detection of PHIP hyperpolarized gas by low-field NMR is demonstrated here for the first time.


Asunto(s)
Complejos de Coordinación/química , Gases/química , Hidrógeno/química , Rodio/química , Diseño de Equipo , Hidrogenación , Espectroscopía de Resonancia Magnética/instrumentación , Norbornanos/química , Solubilidad
5.
Anal Chem ; 86(18): 9042-9, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25162371

RESUMEN

We demonstrate the feasibility of microscale molecular imaging using hyperpolarized proton and carbon-13 MRI contrast media and low-field (47.5 mT) preclinical scale (38 mm i.d.) 2D magnetic resonance imaging (MRI). Hyperpolarized proton images with 94 × 94 µm(2) spatial resolution and hyperpolarized carbon-13 images with 250 × 250 µm(2) in-plane spatial resolution were recorded in 4-8 s (largely limited by the electronics response), surpassing the in-plane spatial resolution (i.e., pixel size) achievable with micro-positron emission tomography (PET). These hyperpolarized proton and (13)C images were recorded using large imaging matrices of up to 256 × 256 pixels and relatively large fields of view of up to 6.4 × 6.4 cm(2). (13)C images were recorded using hyperpolarized 1-(13)C-succinate-d2 (30 mM in water, %P(13C) = 25.8 ± 5.1% (when produced) and %P(13C) = 14.2 ± 0.7% (when imaged), T1 = 74 ± 3 s), and proton images were recorded using (1)H hyperpolarized pyridine (100 mM in methanol-d4, %P(H) = 0.1 ± 0.02% (when imaged), T1 = 11 ± 0.1 s). Both contrast agents were hyperpolarized using parahydrogen (>90% para-fraction) in an automated 5.75 mT parahydrogen induced polarization (PHIP) hyperpolarizer. A magnetized path was demonstrated for successful transportation of a (13)C hyperpolarized contrast agent (1-(13)C-succinate-d2, sensitive to fast depolarization when at the Earth's magnetic field) from the PHIP polarizer to the 47.5 mT low-field MRI. While future polarizing and low-field MRI hardware and imaging sequence developments can further improve the low-field detection sensitivity, the current results demonstrate that microscale molecular imaging in vivo is already feasible at low (<50 mT) fields and potentially at low (~1 mM) metabolite concentrations.


Asunto(s)
Medios de Contraste/química , Imagen por Resonancia Magnética , Isótopos de Carbono/química , Hidrógeno/química , Espectroscopía de Resonancia Magnética , Protones , Piridinas/química , Relación Señal-Ruido , Ácido Succínico/química
6.
Chemistry ; 20(45): 14629-32, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25263795

RESUMEN

Parahydrogen induced polarization was employed to prepare a relatively long-lived correlated nuclear spin state between methylene and methyl protons in propane gas. Conventionally, such states are converted into a strong NMR signal enhancement by transferring the reaction product to a high magnetic field in an adiabatic longitudinal transport after dissociation engenders net alignment (ALTADENA) experiment. However, the relaxation time T1 of ∼0.6 s of the resulting hyperpolarized propane is too short for potential biomedical applications. The presented alternative approach employs low-field MRI to preserve the initial correlated state with a much longer decay time TLLSS =(4.7±0.5) s. While the direct detection at low-magnetic fields (e.g. 0.0475 T) is challenging, we demonstrate here that spin-lock induced crossing (SLIC) at this low magnetic field transforms the long-lived correlated state into an observable nuclear magnetization suitable for MRI with sub-millimeter and sub-second spatial and temporal resolution, respectively. Propane is a non-toxic gas, and therefore, these results potentially enable low-cost high-resolution high-speed MRI of gases for functional imaging of lungs and other applications.


Asunto(s)
Hidrógeno/química , Imagen por Resonancia Magnética/métodos , Gases/química
7.
Chemistry ; 20(37): 11636-9, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-24961814

RESUMEN

Several supported metal catalysts were synthesized, characterized, and tested in heterogeneous hydrogenation of propene with parahydrogen to maximize nuclear spin hyperpolarization of propane gas using parahydrogen induced polarization (PHIP). The Rh/TiO2 catalyst with a metal particle size of 1.6 nm was found to be the most active and effective in the pairwise hydrogen addition and robust, demonstrating reproducible results with multiple hydrogenation experiments and stability for ≥1.5 years. 3D (1) H magnetic resonance imaging (MRI) of 1 % hyperpolarized flowing gas with microscale spatial resolution (625×625×625 µm(3) ) and large imaging matrix (128×128×32) was demonstrated by using a preclinical 4.7 T scanner and 17.4 s imaging scan time.


Asunto(s)
Hidrógeno/química , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Rodio/química , Titanio/química , Catálisis , Gases , Espectroscopía de Resonancia Magnética , Protones
8.
Chemphyschem ; 15(18): 4100-7, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25367202

RESUMEN

By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 10(5)-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high-resolution low-field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real-time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low-field (milli-Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen-enhanced NMR and MRI, which are free from the limitations of high-field magnetic resonance (including susceptibility-induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Iridio/análisis , Imagen Molecular/métodos , Piridinas/análisis
9.
Angew Chem Int Ed Engl ; 53(29): 7495-8, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-24889730

RESUMEN

A novel variant of an iridium-based organometallic catalyst was synthesized and used to enhance the NMR signals of pyridine in a heterogeneous phase by immobilization on polymer microbead solid supports. Upon administration of parahydrogen (pH2) gas to a methanol mixture containing the HET-SABRE catalyst particles and the pyridine, up to fivefold enhancements were observed in the (1)H NMR spectra after sample transfer to high field (9.4 T). Importantly, enhancements were not due to any residual catalyst molecules in solution, thus supporting the true heterogeneity of the SABRE process. Further significant improvements may be expected by systematic optimization of experimental parameters. Moreover, the heterogeneous catalyst is easy to separate and recycle, thus opening a door to future potential applications varying from spectroscopic studies of catalysis, to imaging metabolites in the body without concern of contamination from expensive and potentially toxic metal catalysts or accompanying organic molecules.


Asunto(s)
Espectroscopía de Protones por Resonancia Magnética/métodos
10.
J Am Chem Soc ; 134(9): 3957-60, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22352377

RESUMEN

We demonstrate that potassium 1-(13)C-phosphoenolpyruvate becomes hyperpolarized potassium 1-(13)C-phospholactate with (13)C T(1) = 36 s after molecular hydrogenation by PASADENA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment). This proof-of-principle study was conducted with a fully protonated molecular precursor. (13)C was polarized to a level of 1%, corresponding to nearly 4000-fold sensitivity enhancement at 3 T. The relevant homo- and heteronuclear spin-spin couplings are reported.


Asunto(s)
Lactatos/química , Isótopos de Carbono , Lactatos/síntesis química , Espectroscopía de Resonancia Magnética/normas , Estructura Molecular , Potasio/química , Estándares de Referencia
11.
J Am Chem Soc ; 133(1): 97-101, 2011 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-21141960

RESUMEN

Presented here is a centrally controlled, automated parahydrogen-based polarizer with in situ detection capability. A 20% polarization, corresponding to a 5,000,000-fold signal enhancement at 48 mT, is demonstrated on 2-hydroxyethyl-1-(13)C-propionate-d(2,3,3) using a double-tuned antenna and pulsed polarization transfer. In situ detection is a refinement of first-generation devices enabling fast calibration of rf pulses and B(0), quality assurance of hyperpolarized contrast agents, and stand-alone operation without the necessity of high-field MR spectrometers. These features are essential for biomedical applications of parahydrogen-based hyperpolarization and for clinical translation. We demonstrate the flexibility of the device by recording (13)C signal decay due to longitudinal relaxation of a hyperpolarized contrast agent at 48 mT corresponding to 2 MHz proton frequency. This appears to be the longest recorded T(1) (101 ± 7 s) for a (13)C hyperpolarized contrast agent in water.


Asunto(s)
Hidrógeno , Espectroscopía de Resonancia Magnética/métodos , Calibración , Medios de Contraste/química , Espectroscopía de Resonancia Magnética/instrumentación , Propionatos/química , Protones , Control de Calidad , Agua/química
12.
Magn Reson Imaging ; 25(7): 1032-8, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17707165

RESUMEN

gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in human brain and has been implicated in several neuropsychiatric disorders. In vivo human brain GABA concentrations are near the detection limit for magnetic resonance spectroscopy ( approximately 1 mM), and because of overlap with more abundant compounds, spectral editing is generally necessary to detect GABA. In previous reports, GABA spectra edited by J-difference spectroscopy vary considerably in appearance. We have evaluated the factors that affect GABA spectra and the conditions necessary for robust acquisition of J-difference spectra from arbitrary brain regions. In particular, we demonstrate that variations in spectral quality can be explained in part by the incoherent addition of transients that results from shot to shot frequency and phase variations. An automated time-domain spectral alignment strategy that enables reproducible acquisition of high-quality GABA spectra at 3 T with a standard 30-cm T/R volume coil is presented. Representative GABA spectra from human frontal lobe, an area where susceptibility-induced frequency and phase variations are especially troublesome, that demonstrate the robustness of the acquisition and data handling strategy used in this study are presented.


Asunto(s)
Química Encefálica , Espectroscopía de Resonancia Magnética/métodos , Ácido gamma-Aminobutírico/metabolismo , Humanos , Espectroscopía de Resonancia Magnética/instrumentación , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador
13.
J Magn Reson ; 284: 115-124, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29028543

RESUMEN

Applications of parahydrogen induced polarization (PHIP) often warrant conversion of the chemically-synthesized singlet-state spin order into net heteronuclear magnetization. In order to obtain optimal yields from the overall hyperpolarization process, catalytic hydrogenation must be tightly synchronized to subsequent radiofrequency (RF) transformations of spin order. Commercial NMR consoles are designed to synchronize applied waves on multiple channels and consequently are well-suited as controllers for these types of hyperpolarization experiments that require tight coordination of RF and non-RF events. Described here is a PHIP instrument interfaced to a portable NMR console operating with a static field electromagnet in the milliTesla regime. In addition to providing comprehensive control over chemistry and RF events, this setup condenses the PHIP protocol into a pulse-program that in turn can be readily shared in the manner of traditional pulse sequences. In this device, a TTL multiplexer was constructed to convert spectrometer TTL outputs into 24 VDC signals. These signals then activated solenoid valves to control chemical shuttling and reactivity in PHIP experiments. Consolidating these steps in a pulse-programming environment speeded calibration and improved quality assurance by enabling the B0/B1 fields to be tuned based on the direct acquisition of thermally polarized and hyperpolarized NMR signals. Performance was tested on the parahydrogen addition product of 2-hydroxyethyl propionate-1-13C-d3, where the 13C polarization was estimated to be P13C=20±2.5% corresponding to 13C signal enhancement approximately 25 million-fold at 9.1 mT or approximately 77,000-fold 13C enhancement at 3 T with respect to thermally induced polarization at room temperature.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Imanes , Campos Electromagnéticos , Hidrógeno/química , Hidrogenación , Espectroscopía de Resonancia Magnética/instrumentación , Ondas de Radio , Reproducibilidad de los Resultados
14.
J Phys Chem B ; 110(45): 22935-41, 2006 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-17092047

RESUMEN

Complete (17)O chemical shielding (CS) and quadrupole coupling (QC) tensors and their molecular orientations were determined for the central residues in two tripeptides Gly-Gly-Val (GGV) and Ala-Gly-Gly (AGG) by single-crystal NMR methods. Tensor orientations in the two peptides are very similar, however, principal components are different. The most shielded CS and smallest magnitude QC components are normal to the peptide plane, while the most deshielded CS and largest QC components are in the peptide plane either at an angle of 17 degrees (CS) or perpendicular (QC) to the C=O bond. Comparisons of principal components from experiment and DFT calculations indicate that the smaller shielding tensor span in GGV (549 ppm) compared to AGG (606 ppm) is likely due to two factors: a shorter "direct" H-bond distance to the peptide carbonyl oxygen and an "indirect" H bond of the peptide NH to a carboxylate rather than a carbonyl. We anticipate that (17)O NMR should be generally useful for probing H-bonding and local electrostatic interactions in proteins and polypeptides. Using the single-crystal data as an accurate reference, we show that a useful subset of the NMR parameters, QC and CS principal components and their relative orientation, can be obtained with reasonable accuracy from a very high-field (21.2 T), stationary sample powder spectrum.


Asunto(s)
Oligopéptidos/química , Oxígeno/química , Amidas/química , Carbono/química , Ácidos Carboxílicos/química , Cristalización , Campos Electromagnéticos , Hidrógeno/química , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética/métodos , Conformación Proteica
15.
J Phys Chem C Nanomater Interfaces ; 120(22): 12149-12156, 2016 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-27350846

RESUMEN

Two synthetic strategies are investigated for the preparation of water-soluble iridium-based catalysts for NMR signal amplification by reversible exchange (SABRE). In one approach, PEGylation of a variant N-heterocyclic carbene provided a novel catalyst with excellent water solubility. However, while SABRE-active in ethanol solutions, the catalyst lost activity in >50% water. In a second approach, synthesis of a novel di-iridium complex precursor where the cyclooctadiene (COD) rings have been replaced by CODDA (1,2-dihydroxy-3,7-cyclooctadiene) leads to the creation of a catalyst [IrCl(CODDA)IMes] that can be dissolved and activated in water-enabling aqueous SABRE in a single step, without need for either an organic cosolvent or solvent removal followed by aqueous reconstitution. The potential utility of the CODDA catalyst for aqueous SABRE is demonstrated with the ∼(-)32-fold enhancement of 1H signals of pyridine in water with only 1 atm of parahydrogen.

16.
J Phys Chem C Nanomater Interfaces ; 119(13): 7525-7533, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-26185545

RESUMEN

Two types of nanoscale catalysts were created to explore NMR signal enhancement via reversible exchange (SABRE) at the interface between heterogeneous and homogeneous conditions. Nanoparticle and polymer comb variants were synthesized by covalently tethering Ir-based organometallic catalysts to support materials comprised of TiO2/PMAA (poly methacrylic acid) and PVP (polyvinyl pyridine), respectively, and characterized by AAS, NMR, and DLS. Following parahydrogen (pH2) gas delivery to mixtures containing one type of "nano-SABRE" catalyst particles, a target substrate, and ethanol, up to ~(-)40-fold and ~(-)7-fold 1H NMR signal enhancements were observed for pyridine substrates using the nanoparticle and polymer comb catalysts, respectively, following transfer to high field (9.4 T). These enhancements appear to result from intact particles and not from any catalyst molecules leaching from their supports; unlike the case with homogeneous SABRE catalysts, high-field (in situ) SABRE effects were generally not observed with the nanoscale catalysts. The potential for separation and reuse of such catalyst particles is also demonstrated. Taken together, these results support the potential utility of rational design at molecular, mesoscopic, and macroscopic/engineering levels for improving SABRE and HET-SABRE (heterogeneous-SABRE) for applications varying from fundamental studies of catalysis to biomedical imaging.

17.
J Phys Chem Lett ; 6(10): 1961-7, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26029349

RESUMEN

We report NMR Signal Amplification by Reversible Exchange (SABRE) hyperpolarization of the rare isotopes in "neat" liquids, each composed only of an otherwise pure target compound with isotopic natural abundance (n.a.) and millimolar concentrations of dissolved catalyst. Pyridine (Py) or Py derivatives are studied at 0.4% isotopic natural abundance ¹5N, deuterated, ¹5N enriched, and in various combinations using the SABRE-SHEATH variant (microTesla magnetic fields to permit direct ¹5N polarization from parahydrogen via reversible binding and exchange with an Ir catalyst). We find that the dilute n.a. ¹5N spin bath in Py still channels spin order from parahydrogen to dilute ¹5N spins, without polarization losses due to the presence of ¹4N or ²H. We demonstrate P(15N) ≈ 1% (a gain of 2900 fold relative to thermal polarization at 9.4 T) at high substrate concentrations. This fundamental finding has a significant practical benefit for screening potentially hyperpolarizable contrast agents without labeling. The capability of screening at n.a. level of ¹5N is demonstrated on examples of mono- and dimethyl-substituted Py (picolines and lutidines previously identified as promising pH sensors), showing that the presence of a methyl group in the ortho position significantly decreases SABRE hyperpolarization.


Asunto(s)
Espectroscopía de Resonancia Magnética , Catálisis , Hidrógeno/química , Iridio/química , Isótopos de Nitrógeno/química , Piridinas/química
18.
J Phys Chem C Nanomater Interfaces ; 119(16): 8786-8797, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25960823

RESUMEN

NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15N-polarization (Theis, T.; et al. J. Am. Chem. Soc.2015, 137, 1404). Hyperpolarization on 15N (and heteronuclei in general) may be advantageous because of the long-lived nature of the hyperpolarization on 15N relative to the short-lived hyperpolarization of protons conventionally hyperpolarized by SABRE, in addition to wider chemical shift dispersion and absence of background signal. Here we show that these unprecedented polarization levels enable 15N magnetic resonance imaging. We also present a theoretical model for the hyperpolarization transfer to heteronuclei, and detail key parameters that should be optimized for efficient 15N-hyperpolarization. The effects of parahydrogen pressure, flow rate, sample temperature, catalyst-to-substrate ratio, relaxation time (T1), and reversible oxygen quenching are studied on a test system of 15N-pyridine in methanol-d4. Moreover, we demonstrate the first proof-of-principle 13C-hyperpolarization using this method. This simple hyperpolarization scheme only requires access to parahydrogen and a magnetic shield, and it provides large enough signal gains to enable one of the first 15N images (2 × 2 mm2 resolution). Importantly, this method enables hyperpolarization of molecular sites with NMR T1 relaxation times suitable for biomedical imaging and spectroscopy.

19.
J Magn Reson ; 245: 58-62, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24954513

RESUMEN

The application of low magnetic fields to heteronuclear NMR has expanded recently alongside the emergence of methods for achieving near unity polarization of spin ensembles, independent of magnetic field strength. The parahydrogen induced hyperpolarization methods in particular, often use a hybrid arrangement where a high field spectrometer is used to detect or image polarized molecules that have been conjured on a separate, dedicated polarizer instrument operating at fields in the mT regime where yields are higher. For controlling polarizer chemistry, spare TTL channels of portable NMR spectrometers can be used to pulse program reaction timings in synchrony with heteronuclear RF transformations. The use of a spectrometer as a portable polarizer control module has the advantage of allowing detection in situ, simplifying the process of optimizing polarization yields prior to in vivo experimental trials. Suitable heteronuclear spectrometers compatible with this application are becoming more common, but are still sparsely available in comparison to a large existing infrastructure of single channel NMR consoles. With the goal of expanding the range of these systems to multinuclear applications, the feasibility of rotating a pair of heteronuclear spins ((13)C and (1)H) at 12mT was investigated in this study. Nonlinear phase and amplitude modulated waveforms designed to simultaneously refocus magnetization at 128kHz ((13)C) and 510kHz ((1)H) were generated numerically with optimal control. Although precise quantitative comparisons were not attempted due to limitations of the experimental setup, signals refocused at heteronuclear frequencies with this PANORAMIC approach (Precession And Nutation for Observing Rotation At Multiple Intervals about the Carrier) yielded amplitudes comparable to signals which were refocused using traditional block pulses on heteronuclear channels. Using this PANORAMIC approach to heteronuclear NMR at low field would reduce expense as well as hardware complexity and bulk, weighed against the caveat that elaborate pulses are required. More work will be necessary to test this method on the targeted application of parahydrogen induced hyperpolarization as well as to quantify efficiency, but upon further development we anticipate that this method may offer a viable 'software' approach to heteronuclear manipulations of spins at low magnetic fields.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Espectroscopía de Protones por Resonancia Magnética/métodos , Simulación por Computador , Campos Electromagnéticos
20.
Contrast Media Mol Imaging ; 9(5): 333-41, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24753438

RESUMEN

Indirect proton detection of (13)C hyperpolarized contrast agents potentially enables greater sensitivity. Presented here is a study of sub-second projection imaging of hyperpolarized (13)C contrast agent addressing the obstacle posed by water suppression for indirect detection in vivo. Sodium acetate phantoms were used to develop and test water suppression and sub-second imaging with frequency-selective RF pulses using spectroscopic and imaging indirect proton detection. A 9.8 mm aqueous solution of (13)C PHIP hyperpolarized 2-hydroxyethyl-(13)C-propionate-d2,3,3 (HEP),

~25% was used for demonstration of indirect proton sub-second imaging detection. Balanced 2D FSSFP (fast steady-state free precession) allowed the recording of proton images with a field of view of 64 × 64 mm(2) and spatial resolution 2 × 2 mm(2) with total acquisition time of less than 0.2 s. In thermally polarized sodium 1-(13)C-acetate, (13) C to (1)H polarization transfer efficiency of 45.1% of the theoretically predicted values was observed in imaging detection corresponding to an 11-fold overall sensitivity improvement compared with direct (13)C FSSFP imaging. (13)C to (1)H polarization transfer efficiency of 27% was observed in imaging detection, corresponding to a 3.25-fold sensitivity improvement compared with direct (13)C FSSFP imaging with hyperpolarized HEP. The range of potential applications and limitations of this sub-second and ultra-sensitive imaging approach are discussed.


Asunto(s)
Medios de Contraste/química , Espectroscopía de Resonancia Magnética , Agua/química , Radioisótopos de Carbono/química , Humanos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Protones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA