Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Amino Acids ; 49(12): 1955-1963, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28421296

RESUMEN

Drug-induced off-target cardiotoxicity, particularly following anti-cancer therapy, is a major concern in new drug discovery and development. To ensure patient safety and efficient pharmaceutical drug development, there is an urgent need to develop more predictive cell model systems and distinct toxicity signatures. In this study, we applied our previously proposed repeated exposure toxicity methodology and performed 1H NMR spectroscopy-based extracellular metabolic profiling in culture medium of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) exposed to doxorubicin (DOX), an anti-cancer agent. Single exposure to DOX did not show alteration in the basal level of extracellular metabolites while repeated exposure to DOX caused reduction in the utilization of pyruvate and acetate, and accumulation of formate compared to control culture medium. During drug washout, only pyruvate showed reversible effect and restored its utilization by hiPSC-CMs. On the other hand, formate and acetate showed irreversible effect in response to DOX exposure. DOX repeated exposure increased release of lactate dehydrogenase (LDH) in culture medium suggesting cytotoxicity events, while declined ATP levels in hiPSC-CMs. Our data suggests DOX perturbed mitochondrial metabolism in hiPSC-CMs. Pyruvate, acetate and formate can be used as metabolite signatures of DOX induced cardiotoxicity. Moreover, the hiPSC-CMs model system coupled with metabolomics technology offers a novel and powerful approach to strengthen cardiac safety assessment during new drug discovery and development.


Asunto(s)
Doxorrubicina/toxicidad , Células Madre Pluripotentes Inducidas/citología , Metaboloma/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Ácido Acético/análisis , Adenosina Trifosfato/análisis , Adenosina Trifosfato/metabolismo , Biomarcadores Farmacológicos/análisis , Biomarcadores Farmacológicos/metabolismo , Cardiotoxinas/toxicidad , Diferenciación Celular , Células Cultivadas , Formiatos/análisis , Humanos , L-Lactato Deshidrogenasa/análisis , L-Lactato Deshidrogenasa/metabolismo , Metabolómica , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Ácido Pirúvico/análisis , Factores de Tiempo
2.
Arch Toxicol ; 90(11): 2763-2777, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26537877

RESUMEN

The currently available techniques for the safety evaluation of candidate drugs are usually cost-intensive and time-consuming and are often insufficient to predict human relevant cardiotoxicity. The purpose of this study was to develop an in vitro repeated exposure toxicity methodology allowing the identification of predictive genomics biomarkers of functional relevance for drug-induced cardiotoxicity in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The hiPSC-CMs were incubated with 156 nM doxorubicin, which is a well-characterized cardiotoxicant, for 2 or 6 days followed by washout of the test compound and further incubation in compound-free culture medium until day 14 after the onset of exposure. An xCELLigence Real-Time Cell Analyser was used to monitor doxorubicin-induced cytotoxicity while also monitoring functional alterations of cardiomyocytes by counting of the beating frequency of cardiomyocytes. Unlike single exposure, repeated doxorubicin exposure resulted in long-term arrhythmic beating in hiPSC-CMs accompanied by significant cytotoxicity. Global gene expression changes were studied using microarrays and bioinformatics tools. Analysis of the transcriptomic data revealed early expression signatures of genes involved in formation of sarcomeric structures, regulation of ion homeostasis and induction of apoptosis. Eighty-four significantly deregulated genes related to cardiac functions, stress and apoptosis were validated using real-time PCR. The expression of the 84 genes was further studied by real-time PCR in hiPSC-CMs incubated with daunorubicin and mitoxantrone, further anthracycline family members that are also known to induce cardiotoxicity. A panel of 35 genes was deregulated by all three anthracycline family members and can therefore be expected to predict the cardiotoxicity of compounds acting by similar mechanisms as doxorubicin, daunorubicin or mitoxantrone. The identified gene panel can be applied in the safety assessment of novel drug candidates as well as available therapeutics to identify compounds that may cause cardiotoxicity.


Asunto(s)
Antraciclinas/efectos adversos , Cardiotoxinas/efectos adversos , Drogas en Investigación/efectos adversos , Miocitos Cardíacos/efectos de los fármacos , Antibióticos Antineoplásicos/efectos adversos , Biomarcadores Farmacológicos/metabolismo , Células Cultivadas , Biología Computacional , Daunorrubicina/efectos adversos , Doxorrubicina/efectos adversos , Evaluación Preclínica de Medicamentos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/citología , Mitoxantrona/efectos adversos , Anotación de Secuencia Molecular , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Inhibidores de Topoisomerasa II/efectos adversos , Pruebas de Toxicidad Crónica
3.
ESC Heart Fail ; 10(6): 3559-3572, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37752740

RESUMEN

AIMS: Mechanochemical signalling drives organogenesis and is highly conserved in mammal evolution. Regaining recovery in myocardial jeopardy by inducing principles linking cardiovascular therapy and clinical outcome has been the dream of scientists for decades. Concepts involving embryonic pathways to regenerate adult failing hearts became popular in the early millennium. Since then, abundant data on stem cell research have been published, never reaching widespread application in heart failure therapy. Another conceptual access, using mechanotransduction in cardiac veins to limit myocardial decay, is pressure-controlled intermittent coronary sinus occlusion (PICSO). Recently, we reported acute molecular signs and signals of PICSO activating regulatory miRNA and inducing cell proliferation mimicking cardiac development in adult failing hearts. According to a previously formulated hypothesis, 'embryonic recall', this study aimed to define molecular signals involved in endogenous heart repair during PICSO and study their relation to patient survival. METHODS AND RESULTS: We previously reported a study on the acute molecular effects of PICSO in an observational non-randomized study. Eight out of the thirty-two patients with advanced heart failure undergoing cardiac resynchronization therapy (CRT) were treated with PICSO. Survival was monitored over 10 years, and coronary sinus blood samples were collected during intervention before and after 20 min and tested for miRNA signalling and proliferation when co-cultured with cardiomyocytes. A numerically lower death rate post-CRT and PICSO as compared with control CRT only, and a non-significant reduction in all-cause mortality risk of 42% was observed (37.5% vs. 54.0%, relative risk = 0.58, 95% confidence interval: 0.17-2.05; P = 0.402). Four miRNAs involved in cell cycle, proliferation, morphogenesis, embryonic development, and apoptosis significantly increased concomitantly in survivors and PICSO compared with a decrease in non-survivors (hsa-miR Let7b, P < 0.01; hsa-miR- 421, P < 0.006; hsa-miR 363-3p, P < 0.03 and hsa-miR 19b-3p P < 0.01). In contrast, three miRNAs involved in proliferation and survival, determining cell fate, and recycling endosomes decreased in survivors and PICSO (hsa miR 101-3p, P < 0.03; hsa-miR 25-3p, P < 002; hsa-miR 30d-5p P < 0.04). In vitro cellular proliferation increased in survivors and lowered in non-survivors showing a pattern distinction, discriminating longevity according to up to 10-year survival in heart failure patients. CONCLUSIONS: This study proposes that generating regenerative signals observed during PICSO intervention relate to patient outcomes. Morphogenetic pathways induced by periods of flow reversal in cardiac veins in a domino-like pattern transform embryonic into regenerative signals. Studies supporting the conversion of mechanochemical signals into regenerative molecules during PICSO are warranted to substantiate predictive power on patient longevity, opening new therapeutic avenues in otherwise untreatable heart failure.


Asunto(s)
MicroARN Circulante , Insuficiencia Cardíaca , MicroARNs , Adulto , Animales , Humanos , Miocitos Cardíacos/metabolismo , Mecanotransducción Celular , MicroARNs/genética , MicroARNs/metabolismo , Insuficiencia Cardíaca/terapia , Proliferación Celular , Mamíferos/metabolismo
4.
Genes Cells ; 15(3): 209-28, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20184659

RESUMEN

Brachyury(+) mesodermal cell population with purity over 79% was obtained from differentiating brachyury embryonic stem cells (ESC) generated with brachyury promoter driven enhanced green fluorescent protein and puromycin-N-acetyltransferase. A comprehensive transcriptomic analysis of brachyury(+) cells enriched with puromycin application from 6-day-old embryoid bodies (EBs), 6-day-old control EBs and undifferentiated ESCs led to identification of 1573 uniquely up-regulated and 1549 uniquely down-regulated transcripts in brachyury(+) cells. Furthermore, transcripts up-regulated in brachyury(+) cells have overrepresented the Gene Ontology annotations (cell differentiation, blood vessel morphogenesis, striated muscle development, placenta development and cell motility) and Kyoto Encyclopedia of Genes and Genomes pathway annotations (mitogen-activated protein kinase signaling and transforming growth factor beta signaling). Transcripts representing Larp2 and Ankrd34b are notably up-regulated in brachyury(+) cells. Knockdown of Larp2 resulted in a significantly down-regulation BMP-2 expression, and knockdown of Ankrd34b resulted in alteration of NF-H, PPARγ and PECAM1 expression. The elucidation of transcriptomic signatures of ESCs-derived brachyury(+) cells will contribute toward defining the genetic and cellular identities of presumptive mesodermal cells. Furthermore, there is a possible involvement of Larp2 in the regulation of the late mesodermal marker BMP-2. Ankrd34b might be a positive regulator of neurogenesis and a negative regulator of adipogenesis.


Asunto(s)
Células Madre Embrionarias/metabolismo , Proteínas Fetales/metabolismo , Proteínas de Dominio T Box/metabolismo , Linfocitos T/metabolismo , Transcriptoma , Acetiltransferasas/metabolismo , Animales , Autoantígenos/genética , Autoantígenos/metabolismo , Proteína Morfogenética Ósea 2/metabolismo , Células Cultivadas , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Ratones , Proteínas de Neurofilamentos/metabolismo , PPAR gamma/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Regiones Promotoras Genéticas , ARN Interferente Pequeño/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Antígeno SS-B
5.
Cell Physiol Biochem ; 25(6): 595-604, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20511704

RESUMEN

Early mammalian heart development is characterized by transient expression of alpha-smooth muscle actin (Acta2). To date, cardiomyocytes expressing Acta2 in the early stages of in vivo development have not been characterized. To functionally characterize Acta2-expressing cardiomyocytes, we used a transgenic ES cell line expressing both the puromycin acetyl transferase (Pac) and enhanced green fluorescent protein (EGFP) cassettes under the control of the Acta2 promoter. The onset of Acta2 expression occurred in parallel with the appearance of beating areas, indicating the formation of cardiomyocytes. Antibiotic selection resulted in a high yield of cardiomyocytes and smooth muscle cells. The green fluorescent beating areas stained positively for multiple cardiomyocyte markers. Comparative electrophysiological analysis including fetal and alpha-MHC-expressing ES cell-derived cardiomyocyte controls showed that Acta2-positive cardiomyocytes contained pacemaker-, atrial- and ventricular-like phenotypes. Interestingly, the proportion of ventricular-like cells was much higher in the Acta2-positive cardiomyocytes population than in control alpha-MHC-expressing cardiomyocytes (75 % and 12 %, respectively). The findings of the present study provide a novel approach for the identification and enrichment of Acta2-positive cardiomyocytes, especially of the ventricular phenotype under in vitro conditions.


Asunto(s)
Actinas/aislamiento & purificación , Actinas/metabolismo , Células Madre Embrionarias/citología , Músculo Liso/metabolismo , Miocitos Cardíacos/metabolismo , Acetiltransferasas/genética , Actinas/genética , Animales , Línea Celular , Separación Celular , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Ratones , Miocitos Cardíacos/citología , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transgenes
6.
Mol Autism ; 11(1): 2, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31921404

RESUMEN

Background: Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder with frequent occurrence of epilepsy, autism spectrum disorder (ASD), intellectual disability (ID), and tumors in multiple organs. The aberrant activation of mTORC1 in TSC has led to treatment with mTORC1 inhibitor rapamycin as a lifelong therapy for tumors, but TSC-associated neurocognitive manifestations remain unaffected by rapamycin. Methods: Here, we generated patient-specific, induced pluripotent stem cells (iPSCs) from a TSC patient with a heterozygous, germline, nonsense mutation in exon 15 of TSC1 and established an isogenic set of heterozygous (Het), null and corrected wildtype (Corr-WT) iPSCs using CRISPR/Cas9-mediated gene editing. We differentiated these iPSCs into neural progenitor cells (NPCs) and examined neurodevelopmental phenotypes, signaling and changes in gene expression by RNA-seq. Results: Differentiated NPCs revealed enlarged cell size in TSC1-Het and Null NPCs, consistent with mTORC1 activation. TSC1-Het and Null NPCs also revealed enhanced proliferation and altered neurite outgrowth in a genotype-dependent manner, which was not reversed by rapamycin. Transcriptome analyses of TSC1-NPCs revealed differentially expressed genes that display a genotype-dependent linear response, i.e., genes upregulated/downregulated in Het were further increased/decreased in Null. In particular, genes linked to ASD, epilepsy, and ID were significantly upregulated or downregulated warranting further investigation. In TSC1-Het and Null NPCs, we also observed basal activation of ERK1/2, which was further activated upon rapamycin treatment. Rapamycin also increased MNK1/2-eIF4E signaling in TSC1-deficient NPCs. Conclusion: MEK-ERK and MNK-eIF4E pathways regulate protein translation, and our results suggest that aberrant translation distinct in TSC1/2-deficient NPCs could play a role in neurodevelopmental defects. Our data showing upregulation of these signaling pathways by rapamycin support a strategy to combine a MEK or a MNK inhibitor with rapamycin that may be superior for TSC-associated CNS defects. Importantly, our generation of isogenic sets of NPCs from TSC patients provides a valuable platform for translatome and large-scale drug screening studies. Overall, our studies further support the notion that early developmental events such as NPC proliferation and initial process formation, such as neurite number and length that occur prior to neuronal differentiation, represent primary events in neurogenesis critical to disease pathogenesis of neurodevelopmental disorders such as ASD.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células-Madre Neurales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Esclerosis Tuberosa , Sistemas CRISPR-Cas , Codón sin Sentido , Edición Génica , Mutación de Línea Germinal , Humanos , Células Madre Pluripotentes Inducidas/citología , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Neurogénesis , Fenotipo , RNA-Seq , Transducción de Señal , Sirolimus , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética
7.
Stem Cell Reports ; 15(5): 1067-1079, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33125875

RESUMEN

The role of leptin receptor (OB-R) signaling in linking pluripotency with growth and development and the consequences of dysfunctional leptin signaling on progression of metabolic disease is poorly understood. Using a global unbiased proteomics approach we report that embryonic fibroblasts (MEFs) carrying the db/db mutation exhibit metabolic abnormalities, while their reprogrammed induced pluripotent stem cells (iPSCs) show altered expression of proteins involved in embryonic development. An upregulation in expression of eukaryotic translation initiation factor 4e (Eif4e) and Stat3 binding to the Eif4e promoter was supported by enhanced protein synthesis in mutant iPSCs. Directed differentiation of db/db iPSCs toward the neuronal lineage showed defects. Gene editing to correct the point mutation in db/db iPSCs using CRISPR-Cas9, restored expression of neuronal markers and protein synthesis while reversing the metabolic defects. These data imply a direct role for OB-R in regulating metabolism in embryonic fibroblasts and key developmental pathways in iPSCs.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Biosíntesis de Proteínas , Receptores de Leptina/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Animales , Sistemas CRISPR-Cas , Diferenciación Celular , Linaje de la Célula , Factor 4E Eucariótico de Iniciación/genética , Fibroblastos/metabolismo , Edición Génica , Regulación del Desarrollo de la Expresión Génica , Metaboloma , Ratones , Ratones Noqueados , Neurogénesis , Proteínas , Proteómica , Receptores de Leptina/genética
8.
Curr Med Chem ; 16(12): 1451-62, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19355899

RESUMEN

Cancer and cardiovascular disease (CVD) chemoprevention can be achieved by the use of natural, synthetic, or biologic compounds to reverse, suppress, or prevent the development of diseases. Chemoprevention is a potential anti-cancer approach, which has reduced secondary effects in comparison to classical prophylaxis. Natural compounds such as flavonoids reduce oxidative stress, which is the most likely mechanism in the protective effects of these compounds. Even though the exact mechanisms of action are not well understood another central action mechanism of polyphenolic flavonoids seems to be an induction of apoptosis as demonstrated in numerous cellular systems. Moreover, flavonoids may modulate protein and lipid kinase signaling pathways. Understanding the mechanism of these natural products will contribute to the development of more specific preventive strategies against cancer and CVD. Much of the research in the field is focused on epigallocatechin-3-O-gallate (EGCG), quercetin and curcumin, which were found to have beneficial effects against cancer and CVD. We review the chemoprotective mechanisms through which these natural compounds exert their beneficial effects against cancer and CVDs.


Asunto(s)
Anticarcinógenos/farmacología , Enfermedades Cardiovasculares/prevención & control , Catequina/análogos & derivados , Curcumina/farmacología , Neoplasias/prevención & control , Estrés Oxidativo/efectos de los fármacos , Quercetina/farmacología , Antioxidantes/farmacología , Catequina/farmacología , Humanos , Modelos Biológicos , Estructura Molecular
9.
Mol Metab ; 24: 108-119, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30940487

RESUMEN

OBJECTIVE: Impaired expansion of peripheral fat contributes to the pathogenesis of insulin resistance and Type 2 Diabetes (T2D). We aimed to identify novel disease-gene interactions during adipocyte differentiation. METHODS: Genes in disease-associated loci for T2D, adiposity and insulin resistance were ranked according to expression in human adipocytes. The top 125 genes were ablated in human pre-adipocytes via CRISPR/CAS9 and the resulting cellular phenotypes quantified during adipocyte differentiation with high-content microscopy and automated image analysis. Morphometric measurements were extracted from all images and used to construct morphologic profiles for each gene. RESULTS: Over 107 morphometric measurements were obtained. Clustering of the morphologic profiles accross all genes revealed a group of 14 genes characterized by decreased lipid accumulation, and enriched for known lipodystrophy genes. For two lipodystrophy genes, BSCL2 and AGPAT2, sub-clusters with PLIN1 and CEBPA identifed by morphological similarity were validated by independent experiments as novel protein-protein and gene regulatory interactions. CONCLUSIONS: A morphometric approach in adipocytes can resolve multiple cellular mechanisms for metabolic disease loci; this approach enables mechanistic interrogation of the hundreds of metabolic disease loci whose function still remains unknown.


Asunto(s)
Adipocitos/citología , Adipogénesis , Diabetes Mellitus/genética , Redes Reguladoras de Genes , Mapas de Interacción de Proteínas , Aciltransferasas/genética , Aciltransferasas/metabolismo , Adipocitos/metabolismo , Adipocitos/patología , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Células Cultivadas , Diabetes Mellitus/patología , Subunidades gamma de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Células HEK293 , Humanos , Resistencia a la Insulina , Perilipina-1/genética , Perilipina-1/metabolismo , Fenotipo , Transcriptoma
10.
Mol Cancer Ther ; 6(3): 926-34, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17363487

RESUMEN

P276-00, a flavone that inhibits cyclin-dependent kinases, has been identified by us recently as a novel antineoplastic agent. In this study, we have selected a panel of human tumor cell lines and xenografts to allow determination of selectivity and efficacy of P276-00. When tested against a panel of 16 cisplatin-sensitive and cisplatin-resistant cell lines, the antiproliferative potential of P276-00 was found to be approximately 30-fold higher than cisplatin. Studies to show tumor sensitivity using clonogenic assay in 22 human xenografts indicated that P276-00 was approximately 26-fold more potent than cisplatin, and further, it was also found to be active against cisplatin-resistant tumors of central nervous system, melanoma, prostate, and renal cancers. Further, we studied the effects of P276-00 on cell cycle progression by flow cytometry using asynchronous and synchronous population of tumor and normal cells. Asynchronous population of human prostate carcinoma (PC-3) and human promyelocytic leukemia (HL-60) cells when exposed to P276-00 showed arrest of slow-growing PC-3 cells in G(2)-M with no significant apoptosis observed up to 72 h. Unlike PC-3, significant apoptosis was seen in fast-growing HL-60 cells at 6 h. However, synchronized human non-small cell lung carcinoma (H-460) and human normal lung fibroblast (WI-38) cells showed arrest of cells in G(1). H-460 cells undergo apoptosis, which increases with longer exposure to the compound and also after exposure to P276-00 for 48 h followed by recovery. In contrast, the normal cells (WI-38) remain arrested in G(1) with no significant apoptosis up to 72 h of exposure and also after 48 h of P276-00 treatment followed by recovery, confirming our previous results that P276-00 was less effective against normal cells compared with cancer cells. After promising in vitro results, P276-00 was checked for in vivo efficacy in murine tumor and human xenograft models. Growth inhibition of murine colon cancer (CA-51) was significant when P276-00 was administered i.p. at 50 mg/kg daily for 20 treatments. However, in murine lung carcinoma model (Lewis lung), an increased dose of 60 mg/kg (30 mg/kg twice daily) administered every alternate day i.p. for seven treatments showed significant inhibition in the growth. Further studies were undertaken to establish the efficacy profile of P276-00 in human tumor xenograft models. In the two xenograft models studied, P276-00 showed potent in vivo antitumor potential. Compound P276-00 at a dose of 35 mg/kg administered daily via the i.p. route for 10 days showed significant (P < 0.05) inhibition in the growth of human colon carcinoma HCT-116 xenograft. Furthermore, P276-00 at a dose of 50 mg/kg once daily and 30 mg/kg twice daily administered via i.p. route for 20 treatments significantly (P < 0.05) inhibited growth of human non-small cell lung carcinoma H-460 xenograft. Thus, the in vitro cellular potency, together with in vivo antitumor activity, confirms the potential of P276-00, a cyclin-dependent kinase inhibitor as an anticancer molecule.


Asunto(s)
Antineoplásicos/uso terapéutico , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos , Flavonas/farmacología , Fase G2/efectos de los fármacos , Neoplasias Experimentales/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cisplatino/uso terapéutico , Quinasas Ciclina-Dependientes/metabolismo , Citometría de Flujo , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Neoplasias Experimentales/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
ESC Heart Fail ; 5(6): 1176-1183, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30230713

RESUMEN

AIMS: Cardiac repair has steered clinical attention and remains an unmet need, because available regenerative therapies lack robust mechanistic evidence. Pressure-controlled intermittent coronary sinus occlusion (PICSO), known to induce angiogenetic and vasoactive molecules as well as to reduce regional ischemia, may activate endogenous regenerative processes in failing myocardium. We aimed to investigate the effects of PICSO in patients with advanced heart failure undergoing cardiac resynchronization therapy. METHODS AND RESULTS: Eight out of 32 patients were treated with PICSO, and the remainder served as controls. After electrode testing including left ventricular leads, PICSO was performed for 20 min. To test immediate molecular responses, in both patient groups, coronary venous blood samples were taken at baseline and after 20 min, the time required for the intervention. Sera were tested for microRNAs and growth factors. To test the ability of up-regulated soluble factors on cell proliferation and expression of transcription factors [e.g. Krüppel-like factor 4 (KLF-4)], sera were co-cultured with human cardiomyocytes and fibroblasts. As compared with controls, significant differential expression (differences between pre-values and post-values in relation to both patient cohorts) of microRNA patterns associated with cardiac development was observed with PICSO. Importantly, miR-143 (P < 0.048) and miR-145 (P < 0,047) increased, both targeting a network of transcription factors (including KLF-4) that promote differentiation and repress proliferation of vascular smooth muscle cells. Additionally, an increase of miR-19b (P < 0.019) known to alleviate endothelial cell apoptosis was found, whereas disadvantageous miR-320b (P < 0.023) suspect to impair expression of c-myc, normally provoking cell cycle re-entry in post-mitotic myocytes and miR-25 (P < 0.023), decreased, a target of anti-miR application to improve contractility in the failing heart. Co-cultured post-PICSO sera significantly increased cellular proliferation both in fibroblasts (P < 0.001) and adult cardiomycytes (P < 0.004) sampled from a transplant recipient as compared with controls. Adult cardiomyocytes showed a seven-fold increase of the transcription factor KLF-4 protein when co-cultured with treated sera as compared with controls. CONCLUSIONS: Here, we show for the first time that PICSO, a trans-coronary sinus catheter intervention, is associated with an increase in morphogens secreted into cardiac veins, normally present during cardiac development, and a significant induction of cell proliferation. Present findings support the notion that epigenetic modifications, that is, haemodynamic stimuli on venous vascular cells, may reverse myocardial deterioration. Further investigations are needed to decipher the maze of complex interacting molecular pathways in failing myocardium and the potential role of PICSO to reinitiate developmental processes to prevent further myocardial decay eventually reaching clinical significance.


Asunto(s)
Oclusión con Balón/métodos , Cateterismo Cardíaco/métodos , Circulación Coronaria/fisiología , Seno Coronario/fisiopatología , Vasos Coronarios/fisiopatología , Insuficiencia Cardíaca/terapia , Anciano , Biomarcadores/sangre , Femenino , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/fisiopatología , Humanos , Factor 4 Similar a Kruppel , Masculino , Persona de Mediana Edad , Presión
12.
Mol Ther Methods Clin Dev ; 5: 116-129, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28480311

RESUMEN

The role of striatin interacting protein 2 (Strip2) in differentiation of embryonic stem cells (ESCs) is still under debate. Strip2-silenced murine (KD) ESCs were differentiated for 4, 8, 12, and 16 days. We show that Strip2 is distributed in the perinucleus or nuclei of wild-type (WT) undifferentiated ESCs, but is localized in high-density nuclear bodies in differentiated cells. CellNet analysis of microarray gene expression data for the KD and scrambled control (SCR) embryoid bodies (EBs), as well as immunostainings of key pluripotent factors, demonstrated that differentiation of KD ESCs is repressed. This occurs even in 16-day-old EBs, which possessed a high tumorigenic potential. Correlated with very high expression levels of epigenetic regulator genes, Hat1 and Dnmt3, enzymatic activities of the histone acetyltransferase type B (Hat1) and DNA (cytosine-5)-methyltransferase 3 beta (Dnmt3b) were higher in differentiated 16-day-old KD EBs than in SCR or WT EBs. The expression levels of let-7, 290, and 302 microRNA families were opposed in KD ESCs, while KD EBs had levels comparable to WT and SCR ESCs during differentiation. Strip2 is critical for the regular differentiation of ESCs. Moreover, Strip2 deficient ESCs showed a dysregulation of epigenetic regulators and microRNAs regulating pluripotency.

13.
PLoS One ; 10(10): e0140192, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26445504

RESUMEN

The multi-subunit mammalian Mediator complex acts as an integrator of transcriptional regulation by RNA Polymerase II, and has emerged as a master coordinator of development and cell fate determination. We previously identified the Mediator subunit, MED28, as a cytosolic binding partner of merlin, the Neurofibromatosis 2 (NF2) tumor suppressor, and thus MED28 is distinct in having a cytosolic role as an NF2 interacting protein as well as a nuclear role as a Mediator complex subunit. Although limited in vitro studies have been performed on MED28, its in vivo function remains unknown. Employing a knockout mouse model, we describe for the first time the requirement for Med28 in the developing mouse embryo. Med28-deficiency causes peri-implantation lethality resulting from the loss of pluripotency of the inner cell mass accompanied by reduced expression of key pluripotency transcription factors Oct4 and Nanog. Further, overexpression of Med28 in mouse embryonic fibroblasts enhances the efficiency of their reprogramming to pluripotency. Cre-mediated inactivation of Med28 in induced pluripotent stem cells shows that Med28 is required for their survival. Intriguingly, heterozygous loss of Med28 results in differentiation of induced pluripotent stem cells into extraembryonic trophectoderm and primitive endoderm lineages. Our findings document the essential role of Med28 in the developing embryo as well as in acquisition and maintenance of pluripotency during reprogramming.


Asunto(s)
Implantación del Embrión , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Complejo Mediador/metabolismo , Animales , Diferenciación Celular , Reprogramación Celular , Pérdida del Embrión/genética , Pérdida del Embrión/metabolismo , Eliminación de Gen , Células Madre Pluripotentes Inducidas/citología , Complejo Mediador/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
14.
Oncotarget ; 6(19): 16981-97, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26219339

RESUMEN

Meningiomas are the most common primary intracranial adult tumor. All Neurofibromatosis 2 (NF2)-associated meningiomas and ~60% of sporadic meningiomas show loss of NF2 tumor suppressor protein. There are no effective medical therapies for progressive and recurrent meningiomas. Our previous work demonstrated aberrant activation of mTORC1 signaling that led to ongoing clinical trials with rapamycin analogs for NF2 and sporadic meningioma patients. Here we performed a high-throughput kinome screen to identify kinases responsible for mTORC1 pathway activation in NF2-deficient meningioma cells. Among the emerging top candidates were the mTORC2-specific target serum/glucocorticoid-regulated kinase 1 (SGK1) and p21-activated kinase 1 (PAK1). In NF2-deficient meningioma cells, inhibition of SGK1 rescues mTORC1 activation, and SGK1 activation is sensitive to dual mTORC1/2 inhibitor AZD2014, but not to rapamycin. PAK1 inhibition also leads to attenuated mTORC1 but not mTORC2 signaling, suggesting that mTORC2/SGK1 and Rac1/PAK1 pathways are independently responsible for mTORC1 activation in NF2-deficient meningiomas. Using CRISPR-Cas9 genome editing, we generated isogenic human arachnoidal cell lines (ACs), the origin cell type for meningiomas, expressing or lacking NF2. NF2-null CRISPR ACs recapitulate the signaling of NF2-deficient meningioma cells. Interestingly, we observe increased SGK1 transcription and protein expression in NF2-CRISPR ACs and in primary NF2-negative meningioma lines. Moreover, we demonstrate that the dual mTORC1/mTORC2 inhibitor, AZD2014 is superior to rapamycin and PAK inhibitor FRAX597 in blocking proliferation of meningioma cells. Importantly, AZD2014 is currently in use in several clinical trials of cancer. Therefore, we believe that AZD2014 may provide therapeutic advantage over rapalogs for recurrent and progressive meningiomas.


Asunto(s)
Proteínas Inmediatas-Precoces/metabolismo , Neoplasias Meníngeas/enzimología , Meningioma/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Antineoplásicos/farmacología , Benzamidas , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Immunoblotting , Neoplasias Meníngeas/genética , Meningioma/genética , Morfolinas/farmacología , Neurofibromatosis 2/genética , Reacción en Cadena de la Polimerasa , Pirimidinas , Transducción de Señal/efectos de los fármacos
15.
Stem Cell Res Ther ; 5(3): 75, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24906886

RESUMEN

INTRODUCTION: Posttranscriptional control of mRNA by microRNA (miRNA) has been implicated in the regulation of diverse biologic processes from directed differentiation of stem cells through organism development. We describe a unique pathway by which miRNA regulates the specialized differentiation of cardiomyocyte (CM) subtypes. METHODS: We differentiated human embryonic stem cells (hESCs) to cardiac progenitor cells and functional CMs, and characterized the regulated expression of specific miRNAs that target transcriptional regulators of left/right ventricular-subtype specification. RESULTS: From >900 known human miRNAs in hESC-derived cardiac progenitor cells and functional CMs, a subset of differentially expressed cardiac miRNAs was identified, and in silico analysis predicted highly conserved binding sites in the 3'-untranslated regions (3'UTRs) of Hand-and-neural-crest-derivative-expressed (HAND) genes 1 and 2 that are involved in left and right ventricular development. We studied the temporal and spatial expression patterns of four miRNAs in differentiating hESCs, and found that expression of miRNA (miR)-363, miR-367, miR-181a, and miR-181c was specific for stage and site. Further analysis showed that miR-363 overexpression resulted in downregulation of HAND1 mRNA and protein levels. A dual luciferase reporter assay demonstrated functional interaction of miR-363 with the full-length 3'UTR of HAND1. Expression of anti-miR-363 in-vitro resulted in enrichment for HAND1-expressing CM subtype populations. We also showed that BMP4 treatment induced the expression of HAND2 with less effect on HAND1, whereas miR-363 overexpression selectively inhibited HAND1. CONCLUSIONS: These data show that miR-363 negatively regulates the expression of HAND1 and suggest that suppression of miR-363 could provide a novel strategy for generating functional left-ventricular CMs.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica/genética , Ventrículos Cardíacos/citología , MicroARNs/genética , Miocitos Cardíacos/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Línea Celular , Humanos , Immunoblotting , Hibridación Fluorescente in Situ , Células Madre Pluripotentes Inducidas/citología , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Stem Cell Res ; 10(2): 228-40, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23314291

RESUMEN

Human embryonic stem cells (hESCs) can be used to model the cellular and molecular mechanisms that underlie embryonic development. Understanding the cellular mechanisms and pathways involved in extraembryonic (ExE) differentiation is of great interest because of the important role of this process in maternal health and fertility. Fibroblast growth factor 2 (FGF-2) is widely used to maintain the self-renewal of hESCs and induced pluripotent stem cells, while all trans retinoic acid (RA) is used to facilitate the directed differentiation of hESCs. Here, we monitored the RA induced differentiation of hESCs to the ExE lineage with and without FGF-2 over a 7-day period via global transcriptional profiling. The stemness markers POU5F1, NANOG and TDGF1 were markedly downregulated, whereas an upregulation of the ExE markers KRT7, CGA, DDAH2 and IGFBP3 was observed. Many of the differentially expressed genes were involved in WNT and TGF-ß signaling. RA inactivated WNT signaling even in the presence of exogenous FGF-2, which that promotes the maintenance of the pluripotent state. We also show that BMP4 was upregulated and that RA was able to modulate the TGF-ß signaling pathway and direct hESCs toward the ExE lineage. In addition, an epigenetic study revealed hypermethylation of the DDAH2, TDGF1 and GATA3 gene promoters, suggesting a role for epigenetic regulation during ExE differentiation. These data reveals that the effect of RA prevails in the presence of exogenous FGF-2 thus resulting in the direction of hESCs toward the ExE lineage.


Asunto(s)
Linaje de la Célula/efectos de los fármacos , Células Madre Embrionarias/citología , Membranas Extraembrionarias/citología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Células Madre Pluripotentes/citología , Tretinoina/farmacología , Animales , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Linaje de la Célula/genética , Forma de la Célula/efectos de los fármacos , Forma de la Célula/genética , Análisis por Conglomerados , Sinergismo Farmacológico , Ectodermo/citología , Ectodermo/efectos de los fármacos , Ectodermo/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Membranas Extraembrionarias/efectos de los fármacos , Membranas Extraembrionarias/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcriptoma/genética , Trofoblastos/citología , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo
17.
PLoS One ; 8(8): e70913, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23936474

RESUMEN

Catecholamine release is known to modulate cardiac output by increasing heart rate. Although much is known about catecholamine function and regulation in adults, little is known about the presence and role of catecholamines during heart development. The present study aimed therefore to evaluate the effects of different catecholamines on early heart development in an in vitro setting using embryonic stem (ES) cell-derived cardiomyocytes. Effects of catecholamine depletion induced by reserpine were examined in murine ES cells (line D3, αPIG44) during differentiation. Cardiac differentiation was assessed by immunocytochemistry, qRT-PCR, quantification of beating clusters, flow cytometry and pharmacological approaches. Proliferation was analyzed by EB cross-section measurements, while functionality of cardiomyocytes was studied by extracellular field potential (FP) measurements using microelectrode arrays (MEAs). To further differentiate between substance-specific effects of reserpine and catecholamine action via α- and ß-receptors we proved the involvement of adrenergic receptors by application of unspecific α- and ß-receptor antagonists. Reserpine treatment led to remarkable down-regulation of cardiac-specific genes, proteins and mesodermal marker genes. In more detail, the average ratio of ∼40% spontaneously beating control clusters was significantly reduced by 100%, 91.1% and 20.0% on days 10, 12, and 14, respectively. Flow cytometry revealed a significant reduction (by 71.6%, n = 11) of eGFP positive CMs after reserpine treatment. By contrast, reserpine did not reduce EB growth while number of neuronal cells in reserpine-treated EBs was significantly increased. MEA measurements of reserpine-treated EBs showed lower FP frequencies and weak responsiveness to adrenergic and muscarinic stimulation. Interestingly we found that developmental inhibition after α- and ß-adrenergic blocker application mimicked developmental changes with reserpine. Using several methodological approaches our data suggest that reserpine inhibits cardiac differentiation. Thus catecholamines play a critical role during development.


Asunto(s)
Catecolaminas/farmacología , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Células Madre Embrionarias/citología , Miocitos Cardíacos/citología , Inhibidores de Captación Adrenérgica/farmacología , Animales , Técnicas Biosensibles , Células Cultivadas , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Técnicas para Inmunoenzimas , Ratones , Análisis por Micromatrices , Microelectrodos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Adrenérgicos/química , Receptores Adrenérgicos/metabolismo , Reserpina/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Stem Cells Dev ; 21(13): 2471-84, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22420508

RESUMEN

Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the inner cell mass, gene expression and morphological changes in cultured ESCs occur hierarchically during their differentiation, with epiblast cells developing first, followed by germ layers and finally somatic cells. Combination of high throughput -omics technologies with murine ESCs offers an alternative approach for studying developmental processes toward organ-specific cell phenotypes. We have made an attempt to understand differentiation networks controlling embryogenesis in vivo using a time kinetic, by identifying molecules defining fundamental biological processes in the pluripotent state as well as in early and the late differentiation stages of ESCs. Our microarray data of the differentiation of the ESCs clearly demonstrate that the most critical early differentiation processes occur at days 2 and 3 of differentiation. Besides monitoring well-annotated markers pertinent to both self-renewal and potency (capacity to differentiate to different cell lineage), we have identified candidate molecules for relevant signaling pathways. These molecules can be further investigated in gain and loss-of-function studies to elucidate their role for pluripotency and differentiation. As an example, siRNA knockdown of MageB16, a gene highly expressed in the pluripotent state, has proven its influence in inducing differentiation when its function is repressed.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes/citología , Transcriptoma , Animales , Biomarcadores/metabolismo , Técnicas de Cultivo de Célula , Desarrollo Embrionario , Células Madre Embrionarias/metabolismo , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Células Madre Pluripotentes/metabolismo , Análisis de Componente Principal , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Factores de Tiempo
19.
Front Biosci (Elite Ed) ; 4(1): 156-68, 2012 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-22201861

RESUMEN

Chemopreventive agents are derived from edible plants and from ancient time is a part of daily intake for many humans and animals. There are several lines of compelling evidence from epidemiological, clinical and laboratory studies that these dietary constituents are associated in reducing cancer risks. However, developmental toxicity of these natural compounds cannot be excluded. In the present study, we examined the effect of chemopreventive agents on the differentiation of mouse embryonic stem cells (ESCs) as an in vitro embryotoxicity model. We assumed that inhibition of developmentally regulated genes in vitro might predict developmental toxicity also under in vivo conditions. We found that epigallocatechin gallate (EGCG) (20 microM) induced the expression of mesodermal and cardiomyocyte genes and a significant increase in the number and the percentage of cardiomyocytes. The increase of the subpopulation correlated with higher numbers of beating foci and beating frequencies. Curcumin on the other hand at 0.4 mM was seen to enhance expression of ectodermal transcripts. Quercetin (2.5 microM) was found to inhibit several developmentally regulated genes.


Asunto(s)
Anticarcinógenos/farmacología , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Animales , Secuencia de Bases , Western Blotting , Línea Celular , Cartilla de ADN , Células Madre Embrionarias/citología , Inmunohistoquímica , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
PLoS One ; 7(8): e44228, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22952932

RESUMEN

Embryonic development can be partially recapitulated in vitro by differentiating human embryonic stem cells (hESCs). Thalidomide is a developmental toxicant in vivo and acts in a species-dependent manner. Besides its therapeutic value, thalidomide also serves as a prototypical model to study teratogenecity. Although many in vivo and in vitro platforms have demonstrated its toxicity, only a few test systems accurately reflect human physiology. We used global gene expression and proteomics profiling (two dimensional electrophoresis (2DE) coupled with Tandem Mass spectrometry) to demonstrate hESC differentiation and thalidomide embryotoxicity/teratogenecity with clinically relevant dose(s). Proteome analysis showed loss of POU5F1 regulatory proteins PKM2 and RBM14 and an over expression of proteins involved in neuronal development (such as PAK2, PAFAH1B2 and PAFAH1B3) after 14 days of differentiation. The genomic and proteomic expression pattern demonstrated differential expression of limb, heart and embryonic development related transcription factors and biological processes. Moreover, this study uncovered novel possible mechanisms, such as the inhibition of RANBP1, that participate in the nucleocytoplasmic trafficking of proteins and inhibition of glutathione transferases (GSTA1, GSTA2), that protect the cell from secondary oxidative stress. As a proof of principle, we demonstrated that a combination of transcriptomics and proteomics, along with consistent differentiation of hESCs, enabled the detection of canonical and novel teratogenic intracellular mechanisms of thalidomide.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Proteómica , Talidomida/farmacología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Células Madre Embrionarias/citología , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Corazón/efectos de los fármacos , Corazón/embriología , Humanos , Cinética , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA