RESUMEN
We report here a Nipah virus (NiV) outbreak in Kozhikode district of Kerala state, India, which had caused fatal encephalitis in a 12-year-old boy and the outbreak response, which led to the successful containment of the disease and the related investigations. Quantitative real-time reverse transcription (RT)-PCR, ELISA-based antibody detection, and whole genome sequencing (WGS) were performed to confirm the NiV infection. Contacts of the index case were traced and isolated based on risk categorization. Bats from the areas near the epicenter of the outbreak were sampled for throat swabs, rectal swabs, and blood samples for NiV screening by real-time RT-PCR and anti-NiV bat immunoglobulin G (IgG) ELISA. A plaque reduction neutralization test was performed for the detection of neutralizing antibodies. Nipah viral RNA could be detected from blood, bronchial wash, endotracheal (ET) secretion, and cerebrospinal fluid (CSF) and anti-NiV immunoglobulin M (IgM) antibodies from the serum sample of the index case. Rapid establishment of an onsite NiV diagnostic facility and contact tracing helped in quick containment of the outbreak. NiV sequences retrieved from the clinical specimen of the index case formed a sub-cluster with the earlier reported Nipah I genotype sequences from India with more than 95% similarity. Anti-NiV IgG positivity could be detected in 21% of Pteropus medius (P. medius) and 37.73% of Rousettus leschenaultia (R. leschenaultia). Neutralizing antibodies against NiV could be detected in P. medius. Stringent surveillance and awareness campaigns need to be implemented in the area to reduce human-bat interactions and minimize spillover events, which can lead to sporadic outbreaks of NiV.
Asunto(s)
COVID-19 , Virus Nipah , Niño , Brotes de Enfermedades , Humanos , Masculino , Virus Nipah/genética , Pandemias , SARS-CoV-2RESUMEN
OBJECTIVES: Due to the remote forest area locations of sporadic cases and outbreaks of Kyasanur forest disease (KFD), rapid diagnosis poses a significant challenge. This study aimed to evaluate the diagnostic performance of Truenat KFD, a simple, rapid and user-friendly point-of-care test for detection of KFD and compare diagnostic accuracy with conventional real-time reverse transcription-polymerase chain reaction (RT-PCR) testing. Truenat KFD can be deployed in a field laboratory setting. METHODS: The study involved 145 clinical specimens, including human serum, monkey necropsy tissues and tick pool, to validate Truenat KFD (Molbio Diagnostics Pvt.Ltd.) for KFD diagnosis. RESULTS: We have optimized and validated the microchip-based Truenat KFD (Molbio Diagnostics Pvt.Ltd.) for KFD diagnosis. Point-of-care testing was highly sensitive and specific, with a detection limit of up to 10 copies of KFD viral RNA. Results were comparable with the gold-standard TaqMan and commercially available Altona RealStar AHFV / KFDV real-time RT-PCR assays. Screening results for human, monkey and tick specimens were 100% concordant across the assays. CONCLUSION: Truenat KFD(Molbio Diagnostics Pvt.Ltd.) was found to be highly sensitive and specific with a significant limit of detection. This point-of-care test would be useful in rapid diagnosis of KFD in remote and/or field settings, quick patient management and control of virus spread.