Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 209(4): 751-759, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35896339

RESUMEN

MHC class I (MHC I) expression in the host influences NK cells in a process termed education. The result of this education is reflected in the responsiveness of NK cells at the level of individual cells as well as in the repertoire of inhibitory MHC I-specific receptors at the NK cell system level. The presence of MHC I molecules in the host environment gives rise to a skewed receptor repertoire in spleen NK cells where subsets expressing few (one or two) inhibitory receptors are expanded whereas subsets with many (three or more) receptors are contracted. It is not known whether this MHC I-dependent skewing is imposed during development or after maturation of NK cells. In this study, we tested the hypothesis that the NK cell receptor repertoire is shaped already early during NK cell development in the bone marrow. We used mice with a repertoire imposed by a single MHC I allele, as well as a C57BL/6 mutant strain with exaggerated repertoire skewing, to investigate Ly49 receptor repertoires at different stages of NK cell differentiation. Our results show that NK cell inhibitory receptor repertoire skewing can indeed be observed in the bone marrow, even during the earliest developmental steps where Ly49 receptors are expressed. This may partly be accounted for by selective proliferation of certain NK cell subsets, but other mechanisms must also be involved. We propose a model for how repertoire skewing is established during a developmental phase in the bone marrow, based on sequential receptor expression as well as selective proliferation.


Asunto(s)
Médula Ósea , Subfamilia A de Receptores Similares a Lectina de Células NK , Animales , Antígenos Ly/metabolismo , Médula Ósea/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Células Asesinas Naturales , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Subfamilia A de Receptores Similares a Lectina de Células NK/genética , Subfamilia A de Receptores Similares a Lectina de Células NK/metabolismo , Receptores Similares a Lectina de Células NK/metabolismo , Receptores de Células Asesinas Naturales/metabolismo
2.
Cancer Immunol Immunother ; 72(5): 1153-1167, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36355079

RESUMEN

Multiple myeloma (MM) is an incurable hematological cancer, in which immune checkpoint inhibition (ICI) with monoclonal antibodies (mAbs) has failed due to uncontrollable immune responses in combination therapies and lack of efficacy in monotherapies. Although NK cell-specific checkpoint targets such as NKG2A and KIRs are currently being evaluated in clinical trials, the clinical impact of NK cells on the PD1 cascade is less well understood compared to T cells. Furthermore, while NK cells have effector activity within the TME, under continuous ligand exposure, NK cell dysfunctionality may occur due to interaction of PD1 and its ligand PD-L1. Due to above-mentioned factors, we designed novel NK cell specific PD1-based chimeric switch receptors (PD1-CSR) by employing signaling domains of DAP10, DAP12 and CD3ζ to revert NK cell inhibition and retarget ICI. PD1-CSR modified NK cells showed increased degranulation, cytokine secretion and cytotoxicity upon recognition of PD-L1+ target cells. Additionally, PD1-CSR+ NK cells infiltrated and killed tumor spheroids. While primary NK cells (pNK), expressing native PD1, showed decreased degranulation and cytokine production against PD-L1+ target cells by twofold, PD1-CSR+ pNK cells demonstrated increased activity upon PD-L1+ target cell recognition and enhanced antibody-dependent cellular cytotoxicity. PD1-CSR+ pNK cells from patients with MM increased degranulation and cytokine expression against autologous CD138+PD-L1+ malignant plasma cells. Taken together, the present results demonstrate that PD1-CSR+ NK cells enhance and sustain potent anti-tumor activity in a PD-L1+ microenvironment and thus represent a promising strategy to advance adoptive NK cell-based immunotherapies toward PD-L1+ cancers.


Asunto(s)
Antígeno B7-H1 , Mieloma Múltiple , Humanos , Antígeno B7-H1/metabolismo , Ligandos , Células Asesinas Naturales , Citocinas/metabolismo , Receptores de Células Asesinas Naturales/metabolismo , Inmunoterapia/métodos , Microambiente Tumoral
3.
Cytotherapy ; 25(7): 763-772, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37055320

RESUMEN

BACKGROUND AIMS: Adoptive cell therapy with chimeric antigen receptor (CAR)-expressing natural killer (NK) cells is an emerging approach that holds promise in multiple myeloma (MM). However, the generation of CAR-NK cells targeting CD38 is met with obstacles due to the expression of CD38 on NK cells. Knock-out of CD38 is currently explored as a strategy, although the consequences of the lack of CD38 expression with regards to engraftment and activity in the bone marrow microenvironment are not fully elucidated. Here, we present an alternative approach by harnessing the CD38dim phenotype occurring during long-term cytokine stimulation of primary NK cells. METHODS: Primary NK cells were expanded from peripheral blood mononuclear cells by long-term IL-2 stimulation. During expansion, the CD38 expression was monitored in order to identify a time point when introduction of a novel affinity-optimized αCD38-CAR confered optimal viability, i.e. prevented fratricide. CD38dim NK cells were trasduced with retroviral vectors encoding for the CAR trasngene and their functionality was assessed in in vitro activation and cytotoxicity assays. RESULTS: We verified the functionality of the αCD38-CAR-NK cells against CD38+ cell lines and primary MM cells. Importantly, we demonstrated that αCD38-CAR-NK cells derived from patients with MM have increased activity against autologous MM samples ex vivo. CONCLUSIONS: Overall, our results highlight that incorporation of a functional αCD38-CAR construct into a suitable NK-cell expansion and activation protocol results in a potent and feasible immunotherapeutic strategy for the treatment of patients with MM.


Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/metabolismo , Citocinas/metabolismo , Mieloma Múltiple/terapia , Leucocitos Mononucleares/metabolismo , Células Asesinas Naturales , Fenotipo , Inmunoterapia , Inmunoterapia Adoptiva/métodos , Línea Celular Tumoral , Microambiente Tumoral
4.
EMBO Rep ; 22(3): e51329, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33480074

RESUMEN

Inadequate persistence of tumor-infiltrating natural killer (NK) cells is associated with poor prognosis in cancer patients. The solid tumor microenvironment is characterized by the presence of immunosuppressive factors, including prostaglandin E2 (PGE2), that limit NK cell persistence. Here, we investigate if the modulation of the cytokine environment in lung cancer with IL-2 or IL-15 renders NK cells resistant to suppression by PGE2. Analyzing Cancer Genome Atlas (TCGA) data, we found that high NK cell gene signatures correlate with significantly improved overall survival in patients with high levels of the prostaglandin E synthase (PTGES). In vitro, IL-15, in contrast to IL-2, enriches for CD25+ /CD54+ NK cells with superior mTOR activity and increased expression of the cAMP hydrolyzing enzyme phosphodiesterase 4A (PDE4A). Consequently, this distinct population of NK cells maintains their function in the presence of PGE2 and shows an increased ability to infiltrate lung adenocarcinoma tumors in vitro and in vivo. Thus, strategies to enrich CD25+ /CD54+ NK cells for adoptive cell therapy should be considered.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Dinoprostona , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Citocinas , Humanos , Células Asesinas Naturales , Transducción de Señal
5.
Curr Issues Mol Biol ; 44(9): 3859-3871, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36135177

RESUMEN

Among the polypeptides that comprise the T cell receptor (TCR), only CD3ζ is found in Natural Killer (NK) cells, where it transmits signals from activating receptors such as CD16 and NKp46. NK cells are potent immune cells that recognize target cells through germline-encoded activating and inhibitory receptors. Genetic engineering of NK cells enables tumor-specific antigen recognition and, thus, has a significant promise in adoptive cell therapy. Ectopic expression of engineered TCR components in T cells leads to mispairing with the endogenous components, making a knockout of the endogenous TCR necessary. To circumvent the mispairing of TCRs or the need for knockout technologies, TCR complex expression has been studied in NK cells. In the current study, we explored the cellular processing of the TCR complex in NK cells. We observed that in the absence of CD3 subunits, the TCR was not expressed on the surface of NK cells and vice versa. Moreover, a progressive increase in surface expression of TCR between day three and day seven was observed after transduction. Interestingly, the TCR complex expression in NK92 cells was enhanced with a proteasome inhibitor (bortezomib) but not a lysosomal inhibitor (chloroquine). Additionally, we observed that the TCR complex was functional in NK92 cells as measured by estimating CD107a as a degranulation marker, IFNγ cytokine production, and killing assays. NK92 cells strongly degranulated when CD3ε was engaged in the presence of TCR, but not when only CD3 was overexpressed. Therefore, our findings encourage further investigation to unravel the mechanisms that prevent the surface expression of the TCR complex.

6.
Eur J Immunol ; 50(4): 494-504, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31834938

RESUMEN

NK cells are innate immune cells characterized by their ability to spontaneously lyse tumor and virally infected cells. We have recently demonstrated that IL-15-sufficient DC regulate NK cell effector functions in mice. Here, we established that among ITAM-proximal signaling molecules, the expression levels of the scaffold molecule Linker for Activation of T cells (LAT) and its transcription factor ELF-1 were reduced 4 days after in vivo depletion of DC. Addition of IL-15, a cytokine presented by DC to NK cells, regulates LAT expression in NK cells with a significant effect on the DNAM1+ subset compared to DNAM1- cells. We also found that LAT expression is regulated via interaction of the DNAM1 receptor with its ligand CD155 in both immature and mature NK cells, independently of NK cell education. Finally, we found that LAT expression within DNAM1+ NK cells might be responsible for enhanced calcium mobilization following the triggering of activating receptors on NK cells. Altogether, we found that LAT expression is tightly regulated in DNAM1+ NK cells, via interaction(s) with DC, which express CD155 and IL-15, resulting in rapid activation of the DNAM1+ subset during activating receptor triggering.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Interleucina-15/metabolismo , Células Asesinas Naturales/inmunología , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Receptores Virales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antígenos de Diferenciación de Linfocitos T/metabolismo , Señalización del Calcio , Células Cultivadas , Citotoxicidad Inmunológica , Proteínas de Unión al ADN/genética , Interleucina-15/genética , Transportador de Aminoácidos Neutros Grandes 1/genética , Activación de Linfocitos , Depleción Linfocítica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , Receptores Virales/genética , Factores de Transcripción/genética , Activación Transcripcional
7.
Am J Hematol ; 96(8): 925-933, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33901326

RESUMEN

Approximately 20% of newly diagnosed multiple myeloma (NDMM) patients harbor t(11;14), a marker of inferior prognosis, resulting in up-regulation of CCND1. These patients respond to BCL2 inhibitor experimental drug venetoclax. Furthermore, t(11;14) is reported to be associated with increased BCL2/MCL1 ratio. We investigated the use of venetoclax (400 mg daily) in a cohort of 25 multiple myeloma (MM) and AL-amyloidosis patients harboring t(11;14) and assessed safety and efficacy. Efficacy was assessed by response rate (RR) and time on treatment. Furthermore, immunohistochemistry (IHC), for BCL2 family member expression was assessed at diagnosis and relapse in the venetoclax-treated group and analyzed for correlation with clinical RR. Additionally, patient material from venetoclax non-treated group including non-t(11;14) diagnosis (n = 27), t(11;14) diagnosis (n = 17), t(11;14) relapse (n = 7), hyperdiploidy (n = 6) and hyperdiploidy + t(11;14) (n = 6) was used for RNA sequencing (RNASeq) and validation by qPCR. Venetoclax treatment in t(11;14) patients demonstrated manageable safety and promising efficacy. Partial responses or better were observed in eleven patients (44%). Responding patients had significantly higher BCL2/MCL1 (p = 0.031) as well as BCL2/BCL-XL (p = 0.021) ratio, regardless of time of measurement before venetoclax treatment. Furthermore, an IRF5 motif was enriched (p < .001) in the downregulated genes in t(11;14) relapses vs diagnoses. The RR with single agent venetoclax was 71% in AL-amyloidosis and 33% in MM, and IHC proved useful in prediction of treatment outcome. We could also demonstrate possible resistance mechanisms of t(11;14), downregulation of IRF5 targeted genes, which can be exploited for therapeutic advantages.


Asunto(s)
Antineoplásicos/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Sulfonamidas/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Humanos , Persona de Mediana Edad , Neoplasias de Células Plasmáticas , Estudios Retrospectivos , Sulfonamidas/farmacología
8.
Cytotherapy ; 21(3): 315-326, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30910383

RESUMEN

As a part of the innate immune system, natural killer (NK) cells are cytotoxic lymphocytes that can exert cytotoxic activity against infected or transformed cells. Furthermore, due to their expression of a functional Fc receptor, they have also been eluded as a major effector fraction in antibody-dependent cellular cytotoxicity. These characteristics have led to multiple efforts to use them for adoptive immunotherapy against various malignancies.  There are now at least 70 clinical trials testing the safety and efficacy of NK cell products around the world in early-phase clinical trials. NK cells are also being tested in the context of tumor retargeting via chimeric antigen receptors, other genetic modification strategies, as well as tumor-specific activation strategies such as bispecific engagers with or without cytokine stimulations. One advantage of the use of NK cells for adoptive immunotherapy is their potential to overcome HLA barriers. This has led to a plethora of sources, such as cord blood hematopoietic stem cells and induced pluripotent stem cells, which can generate comparatively high cytotoxic NK cells to peripheral blood counterparts. However, the variety of the sources has led to a heterogeneity in the characterization of the final infusion product. Therefore, in this review, we will discuss a comparative assessment strategy, from characterization of NK cells at collection to final product release by various phenotypic and functional assays, in an effort to predict potency of the cellular product.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/inmunología , Neoplasias/terapia , Animales , Antígeno CD56/inmunología , Antígeno CD56/metabolismo , Pruebas Inmunológicas de Citotoxicidad/métodos , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Enfermedad Injerto contra Huésped/prevención & control , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Ratones , Receptores de IgG/inmunología , Receptores de IgG/metabolismo , Resultado del Tratamiento
9.
J Exp Clin Cancer Res ; 43(1): 13, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38191418

RESUMEN

BACKGROUND: Inflammation in the eye is often associated with aggravated ocular diseases such as uveal melanoma (UM). Poor prognosis of UM is generally associated with high potential of metastatic liver dissemination. A strong driver of metastatic dissemination is the activation of the epithelial-mesenchymal transition (EMT) regulating transcription factor ZEB1, and high expression of ZEB1 is associated with aggressiveness of UM. While ZEB1 expression can be also associated with immune tolerance, the underlying drivers of ZEB1 activation remain unclear. METHODS: Transcriptomic, in vitro, ex vivo, and in vivo analyses were used to investigate the impact on clinical prognosis of immune infiltration in the ocular tumor microenvironment. A metastatic liver dissemination model of was developed to address the role of natural killer (NK) cells in driving the migration of UM. RESULTS: In a pan-cancer TCGA analysis, natural killer (NK) cells were associated with worse overall survival in uveal melanoma and more abundant in high-risk monosomy 3 tumors. Furthermore, uveal melanoma expressed high levels of the tumor necrosis factor superfamily member 4-1BB ligand, particularly in tumors with monosomy 3 and BAP1 mutations. Tumors expressing 4-1BB ligand induced CD73 expression on NK cells accompanied with the ability to promote tumor dissemination. Through ligation of 4-1BB, NK cells induced the expression of the ZEB1 transcription factor, leading to the formation of liver metastasis of uveal melanoma. CONCLUSIONS: Taken together, the present study demonstrates a role of NK cells in the aggravation of uveal melanoma towards metastatic disease.


Asunto(s)
Ligando 4-1BB , Melanoma , Humanos , Melanoma/genética , Transición Epitelial-Mesenquimal , Células Asesinas Naturales , Monosomía , Microambiente Tumoral
10.
Sci Transl Med ; 16(747): eadi2952, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748775

RESUMEN

Apart from their killer identity, natural killer (NK) cells have integral roles in shaping the tumor microenvironment. Through immune gene deconvolution, the present study revealed an interplay between NK cells and myeloid-derived suppressor cells (MDSCs) in nonresponders of immune checkpoint therapy. Given that the mechanisms governing the outcome of NK cell-to-myeloid cell interactions remain largely unknown, we sought to investigate the cross-talk between NK cells and suppressive myeloid cells. Upon contact with tumor-experienced NK cells, monocytes and neutrophils displayed increased expression of MDSC-related suppressive factors along with increased capacities to suppress T cells. These changes were accompanied by impaired antigen presentation by monocytes and increased ER stress response by neutrophils. In a cohort of patients with sarcoma and breast cancer, the production of interleukin-6 (IL-6) by tumor-infiltrating NK cells correlated with S100A8/9 and arginase-1 expression by MDSCs. At the same time, NK cell-derived IL-6 was associated with tumors with higher major histocompatibility complex class I expression, which we further validated with b2m-knockout (KO) tumor mice models. Similarly in syngeneic wild-type and IL-6 KO mouse models, we then demonstrated that the accumulation of MDSCs was influenced by the presence of such regulatory NK cells. Inhibition of the IL-6/signal transducer and activator of transcription 3 (STAT3) axis alleviated suppression of T cell responses, resulting in reduced tumor growth and metastatic dissemination. Together, these results characterize a critical NK cell-mediated mechanism that drives the development of MDSCs during tumor immune escape.


Asunto(s)
Tolerancia Inmunológica , Interleucina-6 , Células Asesinas Naturales , Células Supresoras de Origen Mieloide , Factor de Transcripción STAT3 , Factor de Transcripción STAT3/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Interleucina-6/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Animales , Humanos , Transducción de Señal , Microambiente Tumoral/inmunología , Ratones Noqueados , Línea Celular Tumoral , Femenino , Ratones , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/patología
11.
Nat Commun ; 14(1): 6035, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758698

RESUMEN

γδ T cells play a pivotal role in protection against various types of infections and tumours, from early childhood on and throughout life. They consist of several subsets characterised by adaptive and innate-like functions, with Vγ9Vδ2 being the largest subset in human peripheral blood. Although these cells show signs of cytotoxicity, their modus operandi remains poorly understood. Here we explore, using live single-cell imaging, the cytotoxic functions of γδ T cells upon interactions with tumour target cells with high temporal and spatial resolution. While γδ T cell killing is dominated by degranulation, the availability of lytic molecules appears tightly regulated in time and space. In particular, the limited co-occurrence of granzyme B and perforin restrains serial killing of tumour cells by γδ T cells. Thus, our data provide new insights into the cytotoxic arsenal and functions of γδ T cells, which may guide the development of more efficient γδ T cell based adoptive immunotherapies.


Asunto(s)
Antineoplásicos , Preescolar , Humanos , Perforina , Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T gamma-delta , Citotoxicidad Inmunológica
12.
Sci Signal ; 16(780): eabq0752, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37040441

RESUMEN

Natural killer (NK) cells recognize virally infected cells and tumors. NK cell function depends on balanced signaling from activating receptors, recognizing products from tumors or viruses, and inhibitory receptors (such as KIR/Ly49), which recognize major histocompatibility complex class I (MHC-I) molecules. KIR/Ly49 signaling preserves tolerance to self but also conveys reactivity toward MHC-I-low target cells in a process known as NK cell education. Here, we found that NK cell tolerance and education were determined by the subcellular localization of the tyrosine phosphatase SHP-1. In mice lacking MHC-I molecules, uneducated, self-tolerant Ly49A+ NK cells showed accumulation of SHP-1 in the activating immune synapse, where it colocalized with F-actin and the signaling adaptor protein SLP-76. Education of Ly49A+ NK cells by the MHC-I molecule H2Dd led to reduced synaptic accumulation of SHP-1, accompanied by augmented signaling from activating receptors. Education was also linked to reduced transcription of Ptpn6, which encodes SHP-1. Moreover, synaptic SHP-1 accumulation was reduced in NK cells carrying the H2Dd-educated receptor Ly49G2 but not in those carrying the noneducating receptor Ly49I. Colocalization of Ly49A and SHP-1 outside of the synapse was more frequent in educated compared with uneducated NK cells, suggesting a role for Ly49A in preventing synaptic SHP-1 accumulation in NK cell education. Thus, distinct patterning of SHP-1 in the activating NK cell synapse may determine NK cell tolerance.


Asunto(s)
Antígenos Ly , Células Asesinas Naturales , Ratones , Animales , Receptores Similares a Lectina de Células NK/metabolismo , Antígenos Ly/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Sinapsis/metabolismo
13.
Eur Heart J ; 32(2): 158-68, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21088011

RESUMEN

AIMS: Recent genome-wide association (GWA) studies identified 10 chromosomal loci for coronary artery disease (CAD) or myocardial infarction (MI). However, these loci explain only a small proportion of the genetic variability of these pertinent diseases. We sought to identify additional CAD/MI loci by applying a three-stage approach. METHODS AND RESULTS: We genotyped n = 1157 MI cases and n = 1748 controls from a population-based study population [German MI Family Study (GerMIFS) III (KORA)] with genome-wide SNP arrays. At this first stage, n = 462 SNPs showed association with MI at P<1 × 10(-3) in two-sided logistic regression. In a second stage, 415 of these SNPs were evaluated in silico in two independent GWA samples, the GerMIFS I (875 cases/1644 controls) and GerMIFS II (1222 cases/1298 controls). Nine SNPs, representing three regions, displayed consistent replication in this in silico analysis (P<0.05 for each GWA sample): five SNPs at 9p21.3, a well-known CAD/MI locus, two SNPs at 10p11.21, and two SNPs at 2p24.3. Wet-lab replication, i.e. the third stage, of SNP rs3739998 (representing the novel locus at 10p11.21, p.S1002T in the KIAA1462 gene) in additional 5790 cases and 5302 controls confirmed the association (P=9.54 × 10(-4)), but not for the 2p24.3 locus. The combined P-value across all stages for SNP rs3739998 is P=1.27 × 10(-11) [odds ratio (OR) = 1.15 (1.11-1.20)]. CONCLUSION: Analysis of a GWA study followed by in silico and wet-lab replication steps identified the KIAA1462 gene, encoding a yet uncharacterized protein, on chromosome 10p11.23 with genome-wide significant association for CAD/MI. Further studies are needed to characterize the functional role of this locus in the aetiology of these diseases.


Asunto(s)
Cromosomas Humanos Par 10/genética , Enfermedad de la Arteria Coronaria/genética , Infarto del Miocardio/genética , Polimorfismo de Nucleótido Simple/genética , Adulto , Moléculas de Adhesión Celular/genética , Cromosomas Humanos Par 9/genética , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Técnicas de Genotipaje/métodos , Humanos , Masculino , Persona de Mediana Edad , Linaje , Factores de Riesgo , Adulto Joven
14.
iScience ; 25(10): 105137, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36185379

RESUMEN

Although PD-1 was shown to be a hallmark of T cells exhaustion, controversial studies have been reported on the role of PD-1 on NK cells. Here, we found by flow cytometry and single cell RNA sequencing analysis that PD-1 can be expressed on MHC class I-deficient tumor-infiltrating NK cells in vivo. We also demonstrate distinct alterations in the phenotype of PD-1-deficient NK cells and a more mature phenotype which might reduce their capacity to migrate and kill in vivo. Tumor-infiltrating NK cells that express PD-1 were highly associated with the expression of CXCR6. Furthermore, our results demonstrate that PD-L1 molecules in membranes of PD-1-deficient NK cells migrate faster than in NK cells from wild-type mice, suggesting that PD-1 and PD-L1 form cis interactions with each other on NK cells. These data demonstrate that there may be a role for the PD-1/PD-L1 axis in tumor-infiltrating NK cells in vivo.

15.
Cell Rep Med ; 3(2): 100508, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35243416

RESUMEN

Few approaches have been made toward exploring autologous NK cells in settings of cancer immunotherapy. Here, we demonstrate the feasibility of infusing multiple doses of ex vivo activated and expanded autologous NK cells in patients with multiple myeloma (MM) post-autologous stem cell transplantation. Infused NK cells were detected in circulation up to 4 weeks after the last infusion. Elevations in plasma granzyme B levels were observed following each consecutive NK cell infusion. Moreover, increased granzyme B levels were detected in bone marrow 4 weeks after the last infusion. All measurable patients had objective, detectable responses after NK cell infusions in terms of reduction in M-component and/or minimal residual disease. The present study demonstrates that autologous NK cell-based immunotherapy is feasible in a setting of MM consolidation therapy. It opens up the possibility for usage of autologous NK cells in clinical settings where patients are not readily eligible for allogeneic NK cell-based immunotherapies.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Quimioterapia de Consolidación , Granzimas , Humanos , Células Asesinas Naturales , Mieloma Múltiple/terapia , Trasplante de Células Madre , Trasplante Autólogo
16.
J Leukoc Biol ; 110(4): 617-628, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34028876

RESUMEN

Protective cytotoxic and proinflammatory cytokine responses by NK cells impact the outcome of infections by Toxoplasma gondii, a common parasite in humans and other vertebrates. However, T. gondii can also sequester within NK cells and downmodulate their effector functions. Recently, the implication of GABA signaling in infection and inflammation-related responses of mononuclear phagocytes and T cells has become evident. Yet, the role of GABAergic signaling in NK cells has remained unknown. Here, we report that human and murine NK cells synthesize and secrete GABA in response to infection challenge. Parasitized NK cells secreted GABA, whereas activation stimuli, such as IL-12/IL-18 or parasite lysates, failed to induce GABA secretion. GABA secretion by NK cells was associated to a transcriptional up-regulation of GABA synthesis enzymes (glutamate decarboxylases [GAD65/67]) and was abrogated by GAD inhibition. Further, NK cells expressed GABA-A receptor subunits and GABA signaling regulators, with transcriptional modulations taking place upon challenge with T. gondii. Exogenous GABA and GABA-containing supernatants from parasitized dendritic cells (DCs) impacted NK cell function by reducing the degranulation and cytotoxicity of NK cells. Conversely, GABA-containing supernatants from NK cells enhanced the migratory responses of parasitized DCs. This enhanced DC migration was abolished by GABA-A receptor antagonism or GAD inhibition and was reconstituted by exogenous GABA. Jointly, the data show that NK cells are GABAergic cells and that GABA hampers NK cell cytotoxicity in vitro. We hypothesize that GABA secreted by parasitized immune cells modulates the immune responses to T. gondii infection.


Asunto(s)
Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/parasitología , Transducción de Señal , Toxoplasma/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Muerte Celular , Degranulación de la Célula/fisiología , Línea Celular , Movimiento Celular , Células Dendríticas/parasitología , Humanos , Células Asesinas Naturales/fisiología , Ratones Endogámicos C57BL , Transcripción Genética
17.
Cancers (Basel) ; 13(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467442

RESUMEN

Natural killer (NK) cells can kill target cells via the recognition of stress molecules and down-regulation of major histocompatibility complex class I (MHC-I). Some NK cells are educated to recognize and kill cells that have lost their MHC-I expression, e.g., tumor or virus-infected cells. A desired property of cancer immunotherapy is, therefore, to activate educated NK cells during anti-tumor responses in vivo. We here analyze NK cell responses to α-galactosylceramide (αGC), a potent activator of invariant NKT (iNKT) cells, or to exosomes loaded with αGC. In mouse strains which express different MHC-I alleles using an extended NK cell flow cytometry panel, we show that αGC induces a biased NK cell proliferation of educated NK cells. Importantly, iNKT cell-induced activation of NK cells selectively increased in vivo missing self-responses, leading to more effective rejection of tumor cells. Exosomes from antigen-presenting cells are attractive anti-cancer therapy tools as they may induce both innate and adaptive immune responses, thereby addressing the hurdle of tumor heterogeneity. Adding αGC to antigen-loaded dendritic-cell-derived exosomes also led to an increase in missing self-responses in addition to boosted T and B cell responses. This study manifests αGC as an attractive adjuvant in cancer immunotherapy, as it increases the functional capacity of educated NK cells and enhances the innate, missing self-based antitumor response.

18.
JCI Insight ; 6(6)2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33621210

RESUMEN

X-linked neutropenia (XLN) is caused by gain-of-function mutations in the actin regulator Wiskott-Aldrich Syndrome protein (WASp). XLN patients have reduced numbers of cytotoxic cells in peripheral blood; however, their capacity to kill tumor cells remains to be determined. Here, we examined NK and T cells from 2 patients with XLN harboring the activating WASpL270P mutation. XLN patient NK and T cells had increased granzyme B content and elevated degranulation and IFN-γ production when compared with healthy control cells. Murine WASpL272P NK and T cells formed stable synapses with YAC-1 tumor cells and anti-CD3/CD28-coated beads, respectively. WASpL272P mouse T cells had normal degranulation and cytokine response whereas WASpL272P NK cells showed an enhanced response. Imaging experiments revealed that while WASpL272P CD8+ T cells had increased accumulation of actin upon TCR activation, WASpL272P NK cells had normal actin accumulation at lytic synapses triggered through NKp46 signaling but had impaired response to lymphocyte function associated antigen-1 engagement. When compared with WT mice, WASpL272P mice showed reduced growth of B16 melanoma and increased capacity to reject MHC class I-deficient cells. Together, our data suggest that cytotoxic cells with constitutively active WASp have an increased capacity to respond to and kill tumor cells.


Asunto(s)
Degranulación de la Célula , Granzimas/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Síndrome de Wiskott-Aldrich/inmunología , Animales , Estudios de Casos y Controles , Ratones , Neoplasias/inmunología , Neoplasias/patología , Linfocitos T Citotóxicos/inmunología , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/patología
19.
Eur J Immunol ; 39(8): 2203-14, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19593769

RESUMEN

The vascular addressins mucosal addressin cell adhesion molecule-1, P-selectin and ICAM-1 permit alpha(4)beta(7)-integrin-expressing DC, especially those of the myeloid lineage (CD11c(+)CD11b(+) DC), to access the pregnant mouse uterus. Injection of blocking monoclonal antibodies against mucosal addressin cell adhesion molecule-1 in P-selectin(-/-) mice or experimental approaches with beta7-integrin(-/-) or ICAM-1(-/-) mice revealed that limited access or absence of CD11c(+)CD11b(+) DC at the maternal/fetal interface negatively affects the frequency, size and functional properties of uterine NK (uNK) cells. Adoptive transfer of DC obtained from WT mice into beta7-integrin(-/-) mice abrogates these effects and emphasizes the importance of DC in uNK cell differentiation. Interestingly, those implantation sites lacking CD11c(+)CD11b(+) DC are characterized by decreased IL-15 and IL-12 mRNA and/or protein levels. Chronic administration of IL-15 in these mice gives rise to uNK cell numbers and size comparable to those of WT mice, whereas additional injection of IL-12 positively affects the IFN-gamma expression of uNK cells. Real-time RT-PCR and protein arrays performed with isolated uterine DC underline the role of DC as a source of IL-15 and IL-12 in the pregnant mouse uterus.


Asunto(s)
Células Dendríticas/metabolismo , Células Asesinas Naturales/metabolismo , Útero/metabolismo , Traslado Adoptivo , Animales , Anticuerpos Monoclonales/farmacología , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Antígeno CD11b/metabolismo , Antígeno CD11c/metabolismo , Moléculas de Adhesión Celular/inmunología , Movimiento Celular/efectos de los fármacos , Células Dendríticas/citología , Células Dendríticas/trasplante , Femenino , Cadenas beta de Integrinas/genética , Cadenas beta de Integrinas/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Interferón gamma/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Interleucina-12/farmacología , Interleucina-15/genética , Interleucina-15/metabolismo , Interleucina-15/farmacología , Células Asesinas Naturales/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucoproteínas , Selectina-P/genética , Selectina-P/metabolismo , Embarazo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Útero/citología , Útero/inmunología
20.
Oncoimmunology ; 6(3): e1284718, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28405511

RESUMEN

The growth and recurrence of a number of cancers is driven by a scarce population of cancer stem cells (CSCs), which are resistant to most current therapies. It has been shown previously that natural killer (NK) cells recognize human glioma, melanoma, colon and prostate CSCs in vitro. We herein show that human and mouse breast CSCs are also susceptible to NK cytotoxic activity in vitro. Moreover, CSC induced autologous NK cell activation and expansion in vivo, which correlate with the inhibition of CSC metastatic spread. These data suggest that NK cells control CSC metastatic spread in vivo and that their use in breast cancer therapy may well be fruitful.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA