Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Mol Cell ; 80(2): 175-177, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33065017

RESUMEN

Eisenbart et al. (2020) find an SSR-associated sRNA, NikS, that is subject to variable repeat-controlled expression. NikS regulates H. pylori virulence by post-transcriptionally repressing pathogenicity factors, including CagA and VacA, via base-pairing to their mRNAs.


Asunto(s)
Helicobacter pylori , Factores de Virulencia , ADN , Regulación Bacteriana de la Expresión Génica , Helicobacter pylori/genética , ARN Bacteriano/genética , Virulencia/genética
2.
EMBO J ; 38(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30833291

RESUMEN

Small RNAs post-transcriptionally regulate many processes in bacteria. Base-pairing of sRNAs near ribosome-binding sites in mRNAs inhibits translation, often requiring the RNA chaperone Hfq. In the canonical model, Hfq simultaneously binds sRNAs and mRNA targets to accelerate pairing. Here, we show that the Escherichia coli sRNAs OmrA and OmrB inhibit translation of the diguanylate cyclase DgcM (previously: YdaM), a player in biofilm regulation. In OmrA/B repression of dgcM, Hfq is not required as an RNA interaction platform, but rather unfolds an inhibitory RNA structure that impedes OmrA/B binding. This restructuring involves distal face binding of Hfq and is supported by RNA structure mapping. A corresponding mutant protein cannot support inhibition in vitro and in vivo; proximal and rim mutations have negligible effects. Strikingly, OmrA/B-dependent translational inhibition in vitro is restored, in complete absence of Hfq, by a deoxyoligoribonucleotide that base-pairs to the biochemically mapped Hfq site in dgcM mRNA We suggest that Hfq-dependent RNA structure remodeling can promote sRNA access, which represents a mechanism distinct from an interaction platform model.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/genética , Biosíntesis de Proteínas , Pliegue del ARN , ARN Bacteriano/genética , ARN Mensajero/genética , ARN Pequeño no Traducido/genética , Escherichia coli/crecimiento & desarrollo , Ribosomas/genética , Ribosomas/metabolismo
3.
Nucleic Acids Res ; 48(21): 12336-12347, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33231643

RESUMEN

In response to DNA damage, Escherichia coli cells activate the expression of the toxin gene tisB of the toxin-antitoxin system tisB-istR1. Of three isoforms, only the processed, highly structured +42 tisB mRNA is active. Translation requires a standby site, composed of two essential elements: a single-stranded region located 100 nucleotides upstream of the sequestered RBS, and a structure near the 5'-end of the active mRNA. Here, we propose that this 5'-structure is an RNA pseudoknot which is required for 30S and protein S1-alone binding to the mRNA. Point mutations that prevent formation of this pseudoknot inhibit formation of translation initiation complexes, impair S1 and 30S binding to the mRNA, and render the tisB mRNA non-toxic in vivo. A set of mutations created in either the left or right arm of stem 2 of the pseudoknot entailed loss of toxicity upon overexpression of the corresponding mRNA variants. Combining the matching right-left arm mutations entirely restored toxicity levels to that of the wild-type, active mRNA. Finally, since many pseudoknots have high affinity for S1, we predicted similar pseudoknots in non-homologous type I toxin-antitoxin systems that exhibit features similar to that of tisB-IstR1, suggesting a shared requirement for standby acting at great distances.


Asunto(s)
Toxinas Bacterianas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Biosíntesis de Proteínas , ARN Bacteriano/genética , ARN Mensajero/genética , Sistemas Toxina-Antitoxina/genética , Toxinas Bacterianas/metabolismo , Emparejamiento Base , Secuencia de Bases , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Conformación de Ácido Nucleico , Mutación Puntual , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/genética , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(32): 15901-15906, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31320593

RESUMEN

In bacteria, stable RNA structures that sequester ribosome-binding sites (RBS) impair translation initiation, and thus protein output. In some cases, ribosome standby can overcome inhibition by structure: 30S subunits bind sequence-nonspecifically to a single-stranded region and, on breathing of the inhibitory structure, relocate to the RBS for initiation. Standby can occur over long distances, as in the active, +42 tisB mRNA, encoding a toxin. This mRNA is translationally silenced by an antitoxin sRNA, IstR-1, that base pairs to the standby site. In tisB and other cases, a direct interaction between 30S subunits and a standby site has remained elusive. Based on fluorescence anisotropy experiments, ribosome toeprinting results, in vitro translation assays, and cross-linking-immunoprecipitation (CLIP) in vitro, carried out on standby-proficient and standby-deficient tisB mRNAs, we provide a thorough characterization of the tisB standby site. 30S subunits and ribosomal protein S1 alone display high-affinity binding to standby-competent fluorescein-labeled +42 mRNA, but not to mRNAs that lack functional standby sites. Ribosomal protein S1 is essential for standby, as 30∆S1 subunits do not support standby-dependent toeprints and TisB translation in vitro. S1 alone- and 30S-CLIP followed by RNA-seq mapping shows that the functional tisB standby site consists of the expected single-stranded region, but surprisingly, also a 5'-end stem-loop structure. Removal of the latter by 5'-truncations, or disruption of the stem, abolishes 30S binding and standby activity. Based on the CLIP-read mapping, the long-distance standby effect in +42 tisB mRNA (∼100 nt) is tentatively explained by S1-dependent directional unfolding toward the downstream RBS.


Asunto(s)
Conformación de Ácido Nucleico , Proteínas Ribosómicas/metabolismo , Sitios de Unión , Reactivos de Enlaces Cruzados/química , Biosíntesis de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia de Metionina/química , Proteínas Ribosómicas/química
5.
RNA Biol ; 17(6): 872-880, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32133913

RESUMEN

Bacteria can move by a variety of mechanisms, the best understood being flagella-mediated motility. Flagellar genes are organized in a three-tiered cascade allowing for temporally regulated expression that involves both transcriptional and post-transcriptional control. The class I operon encodes the master regulator FlhDC that drives class II gene transcription. Class II genes include fliA and flgM, which encode the Sigma factor σ28, required for class III transcription, and the anti-Sigma factor FlgM, which inhibits σ28 activity, respectively. The flhDC mRNA is regulated by several small regulatory RNAs (sRNAs). Two of these, the sequence-related OmrA and OmrB RNAs, inhibit FlhD synthesis. Here, we report on a second layer of sRNA-mediated control downstream of FhlDC in the flagella pathway. By mutational analysis, we confirm that a predicted interaction between the conserved 5' seed sequences of OmrA/B and the early coding sequence in flgM mRNA reduces FlgM expression. Regulation is dependent on the global RNA-binding protein Hfq. In vitro experiments support a canonical mechanism: binding of OmrA/B prevents ribosome loading and decreases FlgM protein synthesis. Simultaneous inhibition of both FlhD and FlgM synthesis by OmrA/B complicated an assessment of how regulation of FlgM alone impacts class III gene transcription. Using a combinatorial mutation strategy, we were able to uncouple these two targets and demonstrate that OmrA/B-dependent inhibition of FlgM synthesis liberates σ28 to ultimately promote higher expression of the class III flagellin gene fliC.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Flagelos/genética , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/fisiología , Proteína de Factor 1 del Huésped/metabolismo , Mutación , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN , Ribosomas/metabolismo
6.
Nucleic Acids Res ; 46(8): 4188-4199, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29420821

RESUMEN

Initiation is the rate-limiting step in translation. It is well-known that stable structure at a ribosome binding site (RBS) impedes initiation. The ribosome standby model of de Smit and van Duin, based on studies of the MS2 phage coat cistron, proposed how high translation rates can be reconciled with stable, inhibitory structures at an RBS. Here, we revisited the coat protein system and assessed the translation efficiency from its sequestered RBS by introducing standby mutations. Further experiments with gfp reporter constructs assessed the effects of 5'-tails-as standby sites-with respect to length and sequence contributions. In particular, combining in vivo and in vitro assays, we can show that tails of CA-dinucleotide repeats-and to a lesser extent, AU-repeats-dramatically increase translation rates. Tails of increasing length reach maximal rate-enhancing effects at 16-18 nucleotides. These standby tails are single-stranded and do not exert their effect by structure changes in the neighboring RBS stem-loop. In vitro translation and toeprinting assays furthermore demonstrate that standby effects are exerted at the level of translation initiation. Finally, as expected, destabilizing mutations within the coat RBS indicate an interplay with the effects of standby tails.


Asunto(s)
Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/química , Sitios de Unión , Proteínas de la Cápside/genética , Levivirus/genética , Mutación , Biosíntesis de Proteínas , Secuencias Repetitivas de Ácidos Nucleicos , Ribosomas/metabolismo
7.
Mol Microbiol ; 103(6): 1020-1033, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27997707

RESUMEN

Bacterial survival strategies involve phenotypic diversity which is generated by regulatory factors and noisy expression of effector proteins. The question of how bacteria exploit regulatory RNAs to make decisions between phenotypes is central to a general understanding of these universal regulators. We investigated the TisB/IstR-1 toxin-antitoxin system of Escherichia coli to appreciate the role of the RNA antitoxin IstR-1 in TisB-dependent depolarization of the inner membrane and persister formation. Persisters are phenotypic variants that have become transiently drug-tolerant by arresting growth. The RNA antitoxin IstR-1 sets a threshold for TisB-dependent depolarization under DNA-damaging conditions, resulting in two sub-populations: polarized and depolarized cells. Furthermore, our data indicate that an inhibitory 5' UTR structure in the tisB mRNA serves as a regulatory RNA element that delays TisB translation to avoid inappropriate depolarization when DNA damage is low. Investigation of the persister sub-population further revealed that both regulatory RNA elements affect persister levels as well as persistence time. This work provides an intriguing example of how bacteria exploit regulatory RNAs to control phenotypic heterogeneity.


Asunto(s)
Antibacterianos/farmacología , Toxinas Bacterianas/genética , Ciprofloxacina/farmacología , Daño del ADN/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Biosíntesis de Proteínas/genética , ARN Pequeño no Traducido/genética , Secuencias Reguladoras de Ácido Ribonucleico/genética , Membrana Celular/patología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , ARN Bacteriano/genética , ARN Mensajero/genética , Respuesta SOS en Genética/efectos de los fármacos , Respuesta SOS en Genética/genética
8.
Genes Dev ; 24(23): 2621-6, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21123649

RESUMEN

Hfq, a protein required for small RNA (sRNA)-mediated regulation in bacteria, binds RNA with low-nanomolar K(d) values and long half-lives of complexes (>100 min). This cannot be reconciled with the 1- 2-min response time of regulation in vivo. We show that RNAs displace each other on Hfq on a short time scale by RNA concentration-driven (active) cycling. Already at submicromolar concentrations of competitor RNA, half-lives of RNA-Hfq complexes are ≈1 min. We propose that competitor RNA associates transiently with RNA-Hfq complexes, RNAs exchange binding sites, and one of the RNAs eventually dissociates. This solves the "strong binding-high turnover" paradox and permits efficient use of the Hfq pool.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteína de Factor 1 del Huésped/metabolismo , ARN Bacteriano/metabolismo , Unión Proteica
9.
Genes Dev ; 24(13): 1345-50, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20595230

RESUMEN

In Escherichia coli, the major nucleoid protein H-NS limits transcription by acting as a repressor or transcriptional silencer, presumably by its ability to close the looped chromosome domains in the nucleoid through DNA-protein-DNA bridging. Here, we demonstrate the direct involvement of H-NS as a positive factor stimulating translation of the malT mRNA. In vitro studies showed that H-NS facilitates a repositioning of the 30S preinitiation complex on the malT mRNA. H-NS stimulation of translation depended on the AU-rich -35 to -40 region of the mRNA. Several additional examples were found demonstrating a novel function for H-NS in translation of genes with suboptimal ribosome-binding sequences.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Activación Transcripcional , Sitios de Unión , Unión Proteica
10.
Curr Genet ; 63(6): 1011-1016, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28560584

RESUMEN

Bacterial dormancy is a valuable survival strategy upon challenging environmental conditions. Dormant cells tolerate the consequences of high stress levels and may re-populate the environment upon return to favorable conditions. Antibiotic-tolerant bacteria-termed persisters-regularly cause relapsing infections, increase the likelihood of antibiotic resistance, and, therefore, earn increasing attention. Their generation often depends on toxins from chromosomal toxin-antitoxin systems. Here, we review recent insights concerning RNA-based control of toxin synthesis, and discuss possible implications for persister generation.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/genética , Sistemas Toxina-Antitoxina/genética , Adaptación Fisiológica , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Toxinas Bacterianas/antagonistas & inhibidores , Toxinas Bacterianas/biosíntesis , Toxinas Bacterianas/genética , Conformación de Ácido Nucleico , Unión Proteica , ARN Bacteriano/metabolismo , Respuesta SOS en Genética , Estrés Fisiológico
11.
Biochem Soc Trans ; 45(6): 1203-1212, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29101308

RESUMEN

Bacterial life is harsh and involves numerous environmental and internal challenges that are perceived as stresses. Consequently, adequate responses to survive, cope with, and counteract stress conditions have evolved. In the last few decades, a class of small, non-coding RNAs (sRNAs) has been shown to be involved as key players in stress responses. This review will discuss - primarily from an enterobacterial perspective - selected stress response pathways that involve antisense-type sRNAs. These include themes of how bacteria deal with severe envelope stress, threats of DNA damage, problems with poisoning due to toxic sugar intermediates, issues of iron homeostasis, and nutrient limitation/starvation. The examples discussed highlight how stress relief can be achieved, and how sRNAs act mechanistically in regulatory circuits. For some cases, we will propose scenarios that may suggest why contributions from post-transcriptional control by sRNAs, rather than transcriptional control alone, appear to be a beneficial and universally selected feature.


Asunto(s)
ARN Bacteriano/fisiología , ARN Pequeño no Traducido/genética , Estrés Fisiológico , ARN Bacteriano/genética
12.
Nucleic Acids Res ; 41(12): e122, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23609548

RESUMEN

We present here a method that enables functional screening of large number of mutations in a single experiment through the combination of random mutagenesis, phenotypic cell sorting and high-throughput sequencing. As a test case, we studied post-transcriptional gene regulation of the bacterial csgD messenger RNA, which is regulated by a small RNA (sRNA). A 109 bp sequence within the csgD 5'-UTR, containing all elements for expression and sRNA-dependent control, was mutagenized close to saturation. We monitored expression from a translational gfp fusion and collected fractions of cells with distinct expression levels by fluorescence-activated cell sorting. Deep sequencing of mutant plasmids from cells in different activity-sorted fractions identified functionally important positions in the messenger RNA that impact on intrinsic (translational activity per se) and extrinsic (sRNA-based) gene regulation. The results obtained corroborate previously published data. In addition to pinpointing nucleotide positions that change expression levels, our approach also reveals mutations that are silent in terms of gene expression and/or regulation. This method provides a simple and informative tool for studies of regulatory sequences in RNA, in particular addressing RNA structure-function relationships (e.g. sRNA-mediated control, riboswitch elements). However, slight protocol modifications also permit mapping of functional DNA elements and functionally important regions in proteins.


Asunto(s)
Regiones no Traducidas 5' , Mutagénesis , Secuencias Reguladoras de Ácido Ribonucleico , Proteínas de Escherichia coli/genética , Citometría de Flujo , Regulación Bacteriana de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Conformación de Ácido Nucleico , Fenotipo , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Pequeño no Traducido/metabolismo , Análisis de Secuencia de ADN , Transactivadores/genética
13.
RNA ; 18(10): 1771-82, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22875808

RESUMEN

The RNA interference machinery has served as a guardian of eukaryotic genomes since the divergence from prokaryotes. Although the basic components have a shared origin, silencing pathways directed by small RNAs have evolved in diverse directions in different eukaryotic lineages. Micro (mi)RNAs regulate protein-coding genes and play vital roles in plants and animals, but less is known about their functions in other organisms. Here, we report, for the first time, deep sequencing of small RNAs from the social amoeba Dictyostelium discoideum. RNA from growing single-cell amoebae as well as from two multicellular developmental stages was sequenced. Computational analyses combined with experimental data reveal the expression of miRNAs, several of them exhibiting distinct expression patterns during development. To our knowledge, this is the first report of miRNAs in the Amoebozoa supergroup. We also show that overexpressed miRNA precursors generate miRNAs and, in most cases, miRNA* sequences, whose biogenesis is dependent on the Dicer-like protein DrnB, further supporting the presence of miRNAs in D. discoideum. In addition, we find miRNAs processed from hairpin structures originating from an intron as well as from a class of repetitive elements. We believe that these repetitive elements are sources for newly evolved miRNAs.


Asunto(s)
Amebozoos/genética , Dictyostelium/genética , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética , Animales , Secuencia de Bases , Análisis por Conglomerados , Dictyostelium/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Genoma de Protozoos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/química , MicroARNs/aislamiento & purificación , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Protozoario/genética , Transfección , Estudios de Validación como Asunto
14.
Mol Microbiol ; 84(3): 414-27, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22324810

RESUMEN

Roughly 10% of all genes in Escherichia coli are controlled by the global transcription factor Lrp, which responds to nutrient availability. Bioinformatically, we identified lrp as one of several putative targets for the sRNA MicF, which is transcriptionally downregulated by Lrp. Deleting micF results in higher Lrp levels, while overexpression of MicF inhibits Lrp synthesis. This effect is by antisense; mutations in the predicted interaction region relieve MicF-dependent repression of Lrp synthesis, and regulation is restored by compensatory mutations. In vitro, MicF sterically interferes with initiation complex formation and inhibits lrp mRNA translation. In vivo, MicF indirectly activates genes in the Lrp regulon by repressing Lrp, and causes severely impaired growth in minimal medium, a phenotype characteristic of lrp deletion strains. The double negative feedback between MicF and Lrp may promote a switch for adequate Lrp-dependent adaptation to nutrient availability. Lrp adds to the growing list of transcription factors that are targeted by sRNAs, thus indicating that perhaps the majority of all bacterial genes may be directly or indirectly controlled by sRNAs.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Retroalimentación Fisiológica , Regulación Bacteriana de la Expresión Génica , Proteína Reguladora de Respuesta a la Leucina/metabolismo , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteína Reguladora de Respuesta a la Leucina/genética , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Transcripción Genética
15.
EMBO J ; 28(24): 3832-44, 2009 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19942857

RESUMEN

The formation of heterochromatin at the centromeres in fission yeast depends on transcription of the outer repeats. These transcripts are processed into siRNAs that target homologous loci for heterochromatin formation. Here, high throughput sequencing of small RNA provides a comprehensive analysis of centromere-derived small RNAs. We found that the centromeric small RNAs are Dcr1 dependent, carry 5'-monophosphates and are associated with Ago1. The majority of centromeric small RNAs originate from two remarkably well-conserved sequences that are present in all centromeres. The high degree of similarity suggests that this non-coding sequence in itself may be of importance. Consistent with this, secondary structure-probing experiments indicate that this centromeric RNA is partially double-stranded and is processed by Dicer in vitro. We further demonstrate the existence of small centromeric RNA in rdp1Delta cells. Our data suggest a pathway for siRNA generation that is distinct from the well-documented model involving RITS/RDRC. We propose that primary transcripts fold into hairpin-like structures that may be processed by Dcr1 into siRNAs, and that these siRNAs may initiate heterochromatin formation independent of RDRC activity.


Asunto(s)
Centrómero/ultraestructura , Regulación Fúngica de la Expresión Génica , ARN Interferente Pequeño/metabolismo , Schizosaccharomyces/fisiología , Secuencia de Bases , Centrómero/metabolismo , Heterocromatina/química , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , Conformación de Ácido Nucleico , ARN/química , ARN/metabolismo , Interferencia de ARN , ARN Bicatenario/química , ARN Interferente Pequeño/química , Schizosaccharomyces/metabolismo , Homología de Secuencia de Ácido Nucleico
16.
RNA Biol ; 10(4): 619-26, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23466677

RESUMEN

The RNA chaperone Hfq is a key player in small RNA (sRNA)-mediated regulation of target mRNAs in many bacteria. The absence of this protein causes pleiotropic phenotypes such as impaired stress regulation and, occasionally, loss of virulence. Hfq promotes rapid sRNA-target mRNA base pairing to allow for fast, adaptive responses. For this to happen, sRNAs and/or mRNAs must be bound by Hfq. However, when the intra- or extracellular environment changes, so does the intracellular RNA pool, and this, in turn, requires a correspondingly rapid change in the pool of Hfq-bound RNAs. Biochemical studies have suggested tight binding of Hfq to many RNAs, indicating very slow dissociation rates. In contrast, the changing pool of binding-competent RNAs must compete for access to this helper protein in a minute time frame (known response time for regulation). How rapid exchange of RNAs on Hfq in vivo can be reconciled with biochemically stable and very slowly dissociating Hfq-RNA complexes is the topic of this review. Several recent reports suggest that the time scale discrepancy can be resolved by an "active cycling" model: rapid exchange of RNAs on Hfq is not limited by slow intrinsic dissociation rates, but is driven by the concentration of free RNA. Thus, transient binding of competitor RNA to Hfq-RNA complexes increases cycling rates and solves the strong binding/high turnover paradox.


Asunto(s)
Proteína de Factor 1 del Huésped/química , Proteína de Factor 1 del Huésped/metabolismo , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Pequeño no Traducido/química , Emparejamiento Base , Sitios de Unión , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/genética , ARN Bacteriano/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
17.
RNA Biol ; 9(12): 1513-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23093802

RESUMEN

Chromosomally encoded toxin-antitoxin (TA) systems are abundantly present in bacteria and archaea. They have become a hot topic in recent years, because-after many frustrating years of searching for biological functions-some are now known to play roles in persister formation. Persister cells represent a subset of a bacterial population that enters a dormant state and thus becomes refractory to the action of antibiotics. TA modules come in several different flavors, regarding the nature of their gene products, their molecular mechanisms of regulation, their cellular targets, and probably their role in physiology. This review will primarily focus on the SOS-associated tisB/istR1 system in Escherichia coli and discuss its nuts and bolts as well as its effect in promoting a subpopulation phenotype that likely benefits long-term survival of a stressed population.


Asunto(s)
Antitoxinas/química , Toxinas Bacterianas/química , Proteínas de Escherichia coli/química , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/química , Antitoxinas/genética , Toxinas Bacterianas/genética , Membrana Celular/química , Membrana Celular/genética , Cromosomas Bacterianos/química , Cromosomas Bacterianos/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Interacciones Hidrofóbicas e Hidrofílicas , Fenotipo , Estabilidad del ARN , ARN sin Sentido/química , ARN sin Sentido/genética , ARN Bacteriano/genética , ARN Mensajero/química , ARN Mensajero/genética , Ribosomas/química , Ribosomas/genética , Respuesta SOS en Genética
18.
PLoS Genet ; 5(5): e1000499, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19492087

RESUMEN

Sensory ataxic neuropathy (SAN) is a recently identified neurological disorder in golden retrievers. Pedigree analysis revealed that all affected dogs belong to one maternal lineage, and a statistical analysis showed that the disorder has a mitochondrial origin. A one base pair deletion in the mitochondrial tRNA(Tyr) gene was identified at position 5304 in affected dogs after re-sequencing the complete mitochondrial genome of seven individuals. The deletion was not found among dogs representing 18 different breeds or in six wolves, ruling out this as a common polymorphism. The mutation could be traced back to a common ancestor of all affected dogs that lived in the 1970s. We used a quantitative oligonucleotide ligation assay to establish the degree of heteroplasmy in blood and tissue samples from affected dogs and controls. Affected dogs and their first to fourth degree relatives had 0-11% wild-type (wt) sequence, while more distant relatives ranged between 5% and 60% wt sequence and all unrelated golden retrievers had 100% wt sequence. Northern blot analysis showed that tRNA(Tyr) had a 10-fold lower steady-state level in affected dogs compared with controls. Four out of five affected dogs showed decreases in mitochondrial ATP production rates and respiratory chain enzyme activities together with morphological alterations in muscle tissue, resembling the changes reported in human mitochondrial pathology. Altogether, these results provide conclusive evidence that the deletion in the mitochondrial tRNA(Tyr) gene is the causative mutation for SAN.


Asunto(s)
Ataxia/veterinaria , Enfermedades de los Perros/genética , Genes Mitocondriales , ARN de Transferencia de Tirosina/genética , Eliminación de Secuencia , Animales , Ataxia/genética , ADN Mitocondrial/química , Perros , Linaje
19.
mBio ; 13(6): e0289122, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36409088

RESUMEN

Bacterial populations can survive exposure to antibiotics through transient phenotypic and gene expression changes. These changes can be attributed to a small subpopulation of bacteria, giving rise to antibiotic persistence. Although this phenomenon has been known for decades, much remains to be learned about the mechanisms that drive persister formation. The RNA-binding protein ProQ has recently emerged as a global regulator of gene expression. Here, we show that ProQ impacts persister formation in Salmonella. In vitro, ProQ contributes to growth arrest in a subset of cells that are able to survive treatment at high concentrations of different antibiotics. The underlying mechanism for ProQ-dependent persister formation involves the activation of metabolically costly processes, including the flagellar pathway and the type III protein secretion system encoded on Salmonella pathogenicity island 2. Importantly, we show that the ProQ-dependent phenotype is relevant during macrophage infection and allows Salmonella to survive the combined action of host immune defenses and antibiotics. Together, our data highlight the importance of ProQ in Salmonella persistence and pathogenesis. IMPORTANCE Bacteria can avoid eradication by antibiotics through a phenomenon known as persistence. Persister cells arise through phenotypic heterogeneity and constitute a small fraction of dormant cells within a population of actively growing bacteria, which is susceptible to antibiotic killing. In this study, we show that ProQ, an RNA-binding protein and global regulator of gene expression, promotes persisters in the human pathogen Salmonella enterica serovar Typhimurium. Bacteria lacking the proQ gene outcompete wild-type bacteria under laboratory conditions, are less prone to enter growth dormancy, and form fewer persister cells. The basis for these phenotypes lies in ProQ's ability to activate energy-consuming cellular processes, including flagellar motility and protein secretion. Importantly, we show that ProQ contributes to the persister phenotype during Salmonella infection of macrophages, indicating an important role of this global regulator in Salmonella pathogenesis.


Asunto(s)
Antibacterianos , Infecciones por Salmonella , Humanos , Antibacterianos/metabolismo , Salmonella typhimurium/genética , Bacterias/genética , Infecciones por Salmonella/tratamiento farmacológico , Proteínas de Unión al ARN/metabolismo
20.
Mol Microbiol ; 77(6): 1380-93, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20659289

RESUMEN

The recently discovered prokaryotic CRISPR/Cas defence system provides immunity against viral infections and plasmid conjugation. It has been demonstrated that in Escherichia coli transcription of the Cascade genes (casABCDE) and to some extent the CRISPR array is repressed by heat-stable nucleoid-structuring (H-NS) protein, a global transcriptional repressor. Here we elaborate on the control of the E. coli CRISPR/Cas system, and study the effect on CRISPR-based anti-viral immunity. Transformation of wild-type E. coli K12 with CRISPR spacers that are complementary to phage Lambda does not lead to detectable protection against Lambda infection. However, when an H-NS mutant of E. coli K12 is transformed with the same anti-Lambda CRISPR, this does result in reduced sensitivity to phage infection. In addition, it is demonstrated that LeuO, a LysR-type transcription factor, binds to two sites flanking the casA promoter and the H-NS nucleation site, resulting in derepression of casABCDE12 transcription. Overexpression of LeuO in E. coli K12 containing an anti-Lambda CRISPR leads to an enhanced protection against phage infection. This study demonstrates that in E. coli H-NS and LeuO are antagonistic regulators of CRISPR-based immunity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/inmunología , Proteínas de Escherichia coli/genética , Factores de Transcripción/genética , Bacteriófago lambda/fisiología , Secuencia de Bases , Clonación Molecular , Huella de ADN , ADN Bacteriano/genética , ADN Intergénico/genética , Escherichia coli K12/virología , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA