Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 107(14): 6471-6, 2010 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-20308544

RESUMEN

RAS and RHO proteins, which contribute to tumorigenesis and metastasis, undergo posttranslational modification with an isoprenyl lipid by protein farnesyltransferase (FTase) or protein geranylgeranyltransferase-I (GGTase-I). Inhibitors of FTase and GGTase-I were developed to block RAS-induced malignancies, but their utility has been difficult to evaluate because of off-target effects, drug resistance, and toxicity. Moreover, the impact of FTase deficiency and combined FTase/GGTase-I deficiency has not been evaluated with genetic approaches. We found that inactivation of FTase eliminated farnesylation of HDJ2 and H-RAS, prevented H-RAS targeting to the plasma membrane, and blocked proliferation of primary and K-RAS(G12D)-expressing fibroblasts. FTase inactivation in mice with K-RAS-induced lung cancer reduced tumor growth and improved survival, similar to results obtained previously with inactivation of GGTase-I. Simultaneous inactivation of FTase and GGTase-I markedly reduced lung tumors and improved survival without apparent pulmonary toxicity. These data shed light on the biochemical and therapeutic importance of FTase and suggest that simultaneous inhibition of FTase and GGTase-I could be useful in cancer therapeutics.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Dimetilaliltranstransferasa/metabolismo , Neoplasias Pulmonares/enzimología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Alelos , Animales , Proliferación Celular , Transformación Celular Neoplásica/genética , Dimetilaliltranstransferasa/deficiencia , Modelos Animales de Enfermedad , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Ratones , Ratones Noqueados , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética
2.
Blood ; 114(17): 3629-32, 2009 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-19710506

RESUMEN

Hyperactive RAS signaling is caused by mutations in RAS genes or a deficiency of the neurofibromatosis gene (NF1) and is common in myeloid malignancies. In mice, expression of oncogenic K-RAS or inactivation of Nf1 in hematopoietic cells results in myeloproliferative disorders (MPDs) that do not progress to acute myeloid leukemia (AML). Because NF1 is a RAS-GTPase-activating protein it has been proposed that NF1 deficiency is functionally equivalent to an oncogenic RAS. It is not clear, however, whether Nf1 deficiency would be redundant in K-RAS-induced MPD development or whether the 2 mutations would cooperate in leukemogenesis. Here, we show that the simultaneous inactivation of Nf1 and expression of K-RAS(G12D) in mouse hematopoietic cells results in AML that was fatal in primary mice within 4 weeks and transplantable to sublethally irradiated secondary recipients. The data point to a strong cooperation between Nf1 deficiency and oncogenic K-RAS.


Asunto(s)
Genes de Neurofibromatosis 1/fisiología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Neurofibromina 1/deficiencia , Proteínas Proto-Oncogénicas p21(ras)/fisiología , Animales , Western Blotting , Cocarcinogénesis , Ensayo de Unidades Formadoras de Colonias , Citometría de Flujo , Hemoglobinas/metabolismo , Integrasas/metabolismo , Leucocitos/metabolismo , Ratones , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Bazo/inmunología , Bazo/metabolismo , Bazo/patología
3.
J Clin Invest ; 117(5): 1294-304, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17476360

RESUMEN

Protein geranylgeranyltransferase type I (GGTase-I) is responsible for the posttranslational lipidation of CAAX proteins such as RHOA, RAC1, and cell division cycle 42 (CDC42). Inhibition of GGTase-I has been suggested as a strategy to treat cancer and a host of other diseases. Although several GGTase-I inhibitors (GGTIs) have been synthesized, they have very different properties, and the effects of GGTIs and GGTase-I deficiency are unclear. One concern is that inhibiting GGTase-I might lead to severe toxicity. In this study, we determined the effects of GGTase-I deficiency on cell viability and K-RAS-induced cancer development in mice. Inactivating the gene for the critical beta subunit of GGTase-I eliminated GGTase-I activity, disrupted the actin cytoskeleton, reduced cell migration, and blocked the proliferation of fibroblasts expressing oncogenic K-RAS. Moreover, the absence of GGTase-I activity reduced lung tumor formation, eliminated myeloproliferative phenotypes, and increased survival of mice in which expression of oncogenic K-RAS was switched on in lung cells and myeloid cells. Interestingly, several cell types remained viable in the absence of GGTase-I, and myelopoiesis appeared to function normally. These findings suggest that inhibiting GGTase-I may be a useful strategy to treat K-RAS-induced malignancies.


Asunto(s)
Transferasas Alquil y Aril/deficiencia , Transferasas Alquil y Aril/genética , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/prevención & control , Sobrevida/fisiología , Proteínas ras/toxicidad , Transferasas Alquil y Aril/antagonistas & inhibidores , Animales , Silenciador del Gen , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Ratones
4.
Blood ; 112(4): 1357-65, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18502828

RESUMEN

Hyperactive signaling through the RAS proteins is involved in the pathogenesis of many forms of cancer. The RAS proteins and many other intracellular signaling proteins are either farnesylated or geranylgeranylated at a carboxyl-terminal cysteine. That isoprenylcysteine is then carboxyl methylated by isoprenylcysteine carboxyl methyltransferase (ICMT). We previously showed that inactivation of Icmt mislocalizes the RAS proteins away from the plasma membrane and blocks RAS transformation of mouse fibroblasts, suggesting that ICMT could be a therapeutic target. However, nothing is known about the impact of inhibiting ICMT on the development of malignancies in vivo. In the current study, we tested the hypothesis that inactivation of Icmt would inhibit the development or progression of a K-RAS-induced myeloproliferative disease in mice. We found that inactivating Icmt reduced splenomegaly, the number of immature myeloid cells in peripheral blood, and tissue infiltration by myeloid cells. Moreover, in the absence of Icmt, the ability of K-RAS-expressing hematopoietic cells to form colonies in methylcellulose without exogenous growth factors was reduced dramatically. Finally, inactivating Icmt reduced lung tumor development and myeloproliferation phenotypes in a mouse model of K-RAS-induced cancer. We conclude that inactivation of Icmt ameliorates phenotypes of K-RAS-induced malignancies in vivo.


Asunto(s)
Trastornos Mieloproliferativos/etiología , Proteína Metiltransferasas/deficiencia , Proteínas Proto-Oncogénicas p21(ras)/fisiología , Animales , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/prevención & control , Ratones , Ratones Noqueados , Células Mieloides/patología , Trastornos Mieloproliferativos/patología , Esplenomegalia
5.
Methods Enzymol ; 438: 367-89, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18413262

RESUMEN

Proteins terminating with a CAAX motif, such as the nuclear lamins and the RAS family of proteins, undergo post-translational modification of a carboxyl-terminal cysteine with an isoprenyl lipid--a process called protein prenylation. After prenylation, the last three residues of CAAX proteins are clipped off by an endoprotease of the endoplasmic reticulum. RCE1 is responsible for the endoproteolytic processing of the RAS proteins and is likely responsible for endoproteolytic processing of the vast majority of CAAX proteins. Prenylation has been shown to be essential for the proper intracellular targeting and function of several CAAX proteins, but the physiologic importance of the endoprotease step has remained less certain. Here, we will review methods that have been used to define the physiologic importance of the endoproteolytic processing step of CAAX protein processing.


Asunto(s)
Endopeptidasas/genética , Endopeptidasas/fisiología , Proteínas ras/metabolismo , Animales , Cardiomiopatía Dilatada/etiología , Proliferación Celular , Transformación Celular Neoplásica , Células Cultivadas , Electroforesis en Gel de Poliacrilamida , Endopeptidasas/deficiencia , Fibroblastos/metabolismo , Genes ras , Hematopoyesis/fisiología , Humanos , Hígado/fisiología , Metilación , Ratones , Ratones Noqueados , Ratones Desnudos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Trastornos Mieloproliferativos/etiología , Procesamiento Proteico-Postraduccional , Transfección , Proteínas ras/aislamiento & purificación
6.
Blood ; 109(2): 763-8, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-16973961

RESUMEN

The RAS proteins undergo farnesylation of a carboxyl-terminal cysteine (the "C" of the carboxyl-terminal CaaX motif). After farnesylation, the 3 amino acids downstream from the farnesyl cysteine (the -aaX of the CaaX motif) are released by RAS-converting enzyme 1 (RCE1). We previously showed that inactivation of Rce1 in mouse fibroblasts mislocalizes RAS proteins away from the plasma membrane and inhibits RAS transformation. Therefore, we hypothesized that the inactivation of Rce1 might inhibit RAS transformation in vivo. To test this hypothesis, we used Cre/loxP recombination techniques to simultaneously inactivate Rce1 and activate a latent oncogenic K-RAS allele in hematopoietic cells in mice. Normally, activation of the oncogenic K-RAS allele in hematopoietic cells leads to rapidly progressing and lethal myeloproliferative disease. Contrary to our hypothesis, the inactivation of Rce1 actually increased peripheral leukocytosis, increased the release of immature hematopoietic cells into the circulation and the infiltration of cells into liver and spleen, and caused mice to die more rapidly. Moreover, in the absence of Rce1, splenocytes and bone marrow cells expressing oncogenic K-RAS yielded more and larger colonies when grown in methylcellulose. We conclude that the inactivation of Rce1 worsens the myeloproliferative disease caused by oncogenic K-RAS.


Asunto(s)
Endopeptidasas/deficiencia , Genes ras , Trastornos Mieloproliferativos/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Progresión de la Enfermedad , Endopeptidasas/genética , Ratones , Ratones Noqueados , Trastornos Mieloproliferativos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA