Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Theor Appl Genet ; 122(4): 759-69, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21153397

RESUMEN

A high-resolution chromosome arm-specific mapping population was used in an attempt to locate/detect gene(s)/QTL for different root traits on the short arm of rye chromosome 1 (1RS) in bread wheat. This population consisted of induced homoeologous recombinants of 1RS with 1BS, each originating from a different crossover event and distinct from all other recombinants in the proportions of rye and wheat chromatin present. It provides a simple and powerful approach to detect even small QTL effects using fewer progeny. A promising empirical Bayes method was applied to estimate additive and epistatic effects for all possible marker pairs simultaneously in a single model. This method has an advantage for QTL analysis in minimizing the error variance and detecting interaction effects between loci with no main effect. A total of 15 QTL effects, 6 additive and 9 epistatic, were detected for different traits of root length and root weight in 1RS wheat. Epistatic interactions were further partitioned into inter-genomic (wheat and rye alleles) and intra-genomic (rye-rye or wheat-wheat alleles) interactions affecting various root traits. Four common regions were identified involving all the QTL for root traits. Two regions carried QTL for almost all the root traits and were responsible for all the epistatic interactions. Evidence for inter-genomic interactions is provided. Comparison of mean values supported the QTL detection.


Asunto(s)
Pan , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Raíces de Plantas/genética , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Triticum/genética , Fenotipo , Brotes de la Planta/genética
2.
J Exp Bot ; 61(10): 2623-33, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20444906

RESUMEN

The spontaneous translocation of the short arm of chromosome 1 of rye (1RS) in bread wheat is associated with higher root biomass and grain yield. Recent studies have confirmed the presence of QTL for different root morphological traits on the 1RS arm in bread wheat. This study was conducted to address two questions in wheat root genetics. First, does the presence of the 1RS arm in bread wheat affect its root anatomy? Second, how does root morphology and anatomy of bread wheat respond to different dosages of 1RS? Near-isogenic plants with a different number (0 to 4 dosages) of 1RS translocations were studied for root morphology and anatomy. The F(1) hybrid, with single doses of the 1RS and 1AS arms, showed heterosis for root and shoot biomass. In other genotypes, with 0, 2, or 4 doses of 1RS, root biomass was incremental with the increase in the dosage of 1RS in bread wheat. This study also provided evidence of the presence of gene(s) influencing root xylem vessel number, size, and distribution in bread wheat. It was found that root vasculature follows a specific developmental pattern along the length of the tap root and 1RS dosage tends to affect the transitions differentially in different positions. This study indicated that the inherent differences in root morphology and anatomy of different 1RS lines may be advantageous compared to normal bread wheat to survive under stress conditions.


Asunto(s)
Pan , Cromosomas de las Plantas/genética , Dosificación de Gen , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Secale/genética , Triticum/anatomía & histología , Cruzamientos Genéticos , Vigor Híbrido/genética , Meristema/citología , Meristema/genética , Fenotipo , Raíces de Plantas/citología , Carácter Cuantitativo Heredable , Análisis de Regresión , Triticum/genética
3.
Theor Appl Genet ; 119(5): 783-93, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19544051

RESUMEN

A rye-wheat centric chromosome translocation 1RS.1BL has been widely used in wheat breeding programs around the world. Increased yield of translocation lines was probably a consequence of increased root biomass. In an effort to map loci-controlling root characteristics, homoeologous recombinants of 1RS with 1BS were used to generate a consensus genetic map comprised of 20 phenotypic and molecular markers, with an average spacing of 2.5 cM. Physically, all recombination events were located in the distal 40% of the arms. A total of 68 recombinants was used and recombination breakpoints were aligned and ordered over map intervals with all the markers, integrated together in a genetic map. This approach enabled dissection of genetic components of quantitative traits, such as root traits, present on 1S. To validate our hypothesis, phenotyping of 45-day-old wheat roots was performed in five lines including three recombinants representative of the entire short arm along with bread wheat parents 'Pavon 76' and Pavon 1RS.1BL. Individual root characteristics were ranked and the genotypic rank sums were subjected to Quade analysis to compare the overall rooting ability of the genotypes. It appears that the terminal 15% of the rye 1RS arm carries gene(s) for greater rooting ability in wheat.


Asunto(s)
Pan , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Raíces de Plantas/genética , Carácter Cuantitativo Heredable , Secale/genética , Triticum/genética , Análisis de Varianza , Marcadores Genéticos , Repeticiones de Minisatélite/genética , Fenotipo , Mapeo Físico de Cromosoma , Brotes de la Planta/genética , Reacción en Cadena de la Polimerasa , Recombinación Genética/genética
4.
Nucleic Acids Res ; 35(9): 2936-43, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17439961

RESUMEN

We report mapping of translocation breakpoints using a microarray. We used complex RNA to compare normal hexaploid wheat (17,000 Mb genome) to a ditelosomic stock missing the short arm of chromosome 1B (1BS) and wheat-rye translocations that replace portions of 1BS with rye 1RS. Transcripts detected by a probe set can come from all three Triticeae genomes in ABD hexaploid wheat, and sequences of homoeologous genes on 1AS, 1BS and 1DS often differ from each other. Absence or replacement of 1BS therefore must sometimes result in patterns within a probe set that deviate from hexaploid wheat. We termed these 'high variance probe sets' (HVPs) and examined the extent to which HVPs associated with 1BS aneuploidy are related to rice genes on syntenic rice chromosome 5 short arm (5S). We observed an enrichment of such probe sets to 15-20% of all HVPs, while 1BS represents approximately 2% of the total genome. In total 257 HVPs constitute wheat 1BS markers. Two wheat-rye translocations subdivided 1BS HVPs into three groups, allocating translocation breakpoints to narrow intervals defined by rice 5S coordinates. This approach could be extended to the entire wheat genome or any organism with suitable aneuploid or translocation stocks.


Asunto(s)
Rotura Cromosómica , Mapeo Cromosómico/métodos , Genómica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Translocación Genética , Triticum/genética , Interpretación Estadística de Datos , Marcadores Genéticos , Genoma de Planta , Sondas de Oligonucleótidos , Oryza/genética
5.
Ann Bot ; 100(5): 991-8, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17940075

RESUMEN

BACKGROUND AND AIMS: Most plant scientists, in contrast to animal scientists, study only half the organism, namely above-ground stems, leaves, flowers and fruits, and neglect below-ground roots. Yet all acknowledge roots are important for anchorage, water and nutrient uptake, and presumably components of yield. This paper investigates the relationship between domestication, and the root systems of landraces, and the parents of early, mid- and late green-revolution bread wheat cultivars. It compares the root system of bread wheat and 'Veery'-type wheat containing the 1RS translocation from rye. METHODS: Wheat germplasm was grown in large pots in sand culture in replicated experiments. This allowed roots to be washed free to study root characters. KEY RESULTS: The three bread wheat parents of early green-revolution wheats have root biomass less than two-thirds the mean of some landrace wheats. Crossing early green-revolution wheat to an F(2) of 'Norin 10' and 'Brevor', further reduced root biomass in mid-generation semi-dwarf and dwarf wheats. Later-generation semi-dwarf wheats show genetic variation for root biomass, but some exhibit further reduction in root size. This is so for some California and UK wheats. The wheat-rye translocation in 'Kavkaz' for the short arm of chromosome 1 (1RS) increased root biomass and branching in cultivars that contained it. CONCLUSIONS: Root size of modern cultivars is small compared with that of landraces. Their root system may be too small for optimum uptake of water and nutrients and maximum grain yield. Optimum root size for grain yield has not been investigated in wheat or most crop plants. Use of 1RS and similar alien translocations may increase root biomass and grain yield significantly in irrigated and rain-fed conditions. Root characters may be integrated into components of yield analysis in wheat. Plant breeders may need to select directly for root characters.


Asunto(s)
Agricultura , Biomasa , Productos Agrícolas/fisiología , Raíces de Plantas/fisiología , Triticum/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA