Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Dev Dyn ; 251(2): 336-349, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34174014

RESUMEN

BACKGROUND: Lymphatic vascular development is regulated by well-characterized signaling and transcriptional pathways. These pathways regulate lymphatic endothelial cell (LEC) migration, motility, polarity, and morphogenesis. Canonical and non-canonical WNT signaling pathways are known to control LEC polarity and development of lymphatic vessels and valves. PKD1, encoding Polycystin-1, is the most commonly mutated gene in polycystic kidney disease but has also been shown to be essential in lymphatic vascular morphogenesis. The mechanism by which Pkd1 acts during lymphangiogenesis remains unclear. RESULTS: Here we find that loss of non-canonical WNT signaling components Wnt5a and Ryk phenocopy lymphatic defects seen in Pkd1 knockout mice. To investigate genetic interaction, we generated Pkd1;Wnt5a double knockout mice. Loss of Wnt5a suppressed phenotypes seen in the lymphatic vasculature of Pkd1-/- mice and Pkd1 deletion suppressed phenotypes observed in Wnt5a-/- mice. Thus, we report mutually suppressive roles for Pkd1 and Wnt5a, with developing lymphatic networks restored to a more wild type state in double mutant mice. This genetic interaction between Pkd1 and the non-canonical WNT signaling pathway ultimately controls LEC polarity and the morphogenesis of developing vessel networks. CONCLUSION: Our work suggests that Pkd1 acts at least in part by regulating non-canonical WNT signaling during the formation of lymphatic vascular networks.


Asunto(s)
Vasos Linfáticos , Enfermedades Renales Poliquísticas , Animales , Vasos Linfáticos/metabolismo , Ratones , Ratones Noqueados , Morfogénesis/genética , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo , Proteína Quinasa C , Proteínas Tirosina Quinasas Receptoras/metabolismo , Vía de Señalización Wnt/genética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
2.
EMBO Rep ; 20(10): e48155, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31468686

RESUMEN

Epigenetic regulators are often hijacked by cancer cells to sustain malignant phenotypes. How cells repurpose key regulators of cell identity as tumour-promoting factors is unclear. The antithetic role of the Polycomb component EZH2 in normal brain and glioma provides a paradigm to dissect how wild-type chromatin modifiers gain a pathological function in cancer. Here, we show that oncogenic signalling induces redistribution of EZH2 across the genome, and through misregulation of homeotic genes corrupts the identity of neural cells. Characterisation of EZH2 targets in de novo transformed cells, combined with analysis of glioma patient datasets and cell lines, reveals that acquisition of tumorigenic potential is accompanied by a transcriptional switch involving de-repression of spinal cord-specifying HOX genes and concomitant silencing of the empty spiracles homologue EMX2, a critical regulator of neurogenesis in the forebrain. Maintenance of tumorigenic potential by glioblastoma cells requires EMX2 repression, since forced EMX2 expression prevents tumour formation. Thus, by redistributing EZH2 across the genome, cancer cells subvert developmental transcriptional programmes that specify normal cell identity and remove physiological breaks that restrain cell proliferation.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Glioma/patología , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Cromatina/metabolismo , Metilación de ADN/genética , Regulación Neoplásica de la Expresión Génica , Genes Homeobox , Glioma/genética , Humanos , Masculino , Ratones Endogámicos NOD , Modelos Biológicos , Fenotipo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética
3.
Dev Biol ; 404(2): 88-102, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26116176

RESUMEN

ROBO2 plays a key role in regulating ureteric bud (UB) formation in the embryo, with mutations in humans and mice leading to supernumerary kidneys. Previous studies have established that the number and position of UB outgrowths is determined by the domain of metanephric mesenchymal Gdnf expression, which is expanded anteriorly in Robo2 mouse mutants. To clarify how this phenotype arises, we used high-resolution 3D imaging to reveal an increase in the number of nephrogenic cord cells, leading to extension of the metanephric mesenchyme field in Robo2-null mouse embryos. Ex vivo experiments suggested a dependence of this effect on proliferative signals from the Wolffian duct. Loss of Robo2 resulted in a failure of the normal separation of the mesenchyme from the Wolffian duct/ureteric epithelium, suggesting that aberrant juxtaposition of these two compartments in Robo2-null mice exposes the mesenchyme to abnormally high levels of proliferative stimuli. Our data suggest a new model in which SLIT-ROBO signalling acts not by attenuating Gdnf expression or activity, but instead by limiting epithelial/mesenchymal interactions in the nascent metanephros and restricting the extent of the nephrogenic field. These insights illuminate the aetiology of multiplex kidney formation in human individuals with ROBO2 mutations.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Proteínas de Homeodominio/genética , Riñón/embriología , Receptores Inmunológicos/genética , Factores de Transcripción/genética , Conductos Mesonéfricos/embriología , Animales , Línea Celular , Proliferación Celular , Células Epiteliales/citología , Factor Neurotrófico Derivado de la Línea Celular Glial/biosíntesis , Proteínas de Homeodominio/biosíntesis , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Mesodermo/citología , Mesodermo/embriología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas/genética , Receptores Inmunológicos/metabolismo , Factores de Transcripción/biosíntesis
4.
Dev Biol ; 395(2): 342-54, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25224227

RESUMEN

The issues of whether and how some organs coordinate their size and shape with the blueprint of the embryo axis, while others appear to regulate their morphogenesis autonomously, remain poorly understood. Mutations in Ift144, encoding a component of the trafficking machinery of primary cilia assembly, result in a range of embryo patterning defects, affecting the limbs, skeleton and neural system. Here, we show that embryos of the mouse mutant Ift144(twt) develop gonads that are larger than wild-type. Investigation of the early patterning of the urogenital ridge revealed that the anterior-posterior domain of the gonad/mesonephros was extended at 10.5 dpc, with no change in the length of the metanephros. In XY embryos, this extension resulted in an increase in testis cord number. Moreover, we observed a concomitant extension of the trunk axis in both sexes, with no change in the length of the tail domain or somite number. Our findings support a model in which: (1) primary cilia regulate embryonic trunk elongation; (2) the length of the trunk axis determines the size of the urogenital ridges; and (3) the gonad domain is partitioned into a number of testis cords that depends on the available space, rather than being divided a predetermined number of times to generate a specific number of cords.


Asunto(s)
Tipificación del Cuerpo/fisiología , Cilios/fisiología , Modelos Biológicos , Proteínas/metabolismo , Torso/embriología , Sistema Urogenital/embriología , Animales , Proteínas del Citoesqueleto , Femenino , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Microscopía Confocal , Proteínas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Genome Res ; 20(8): 1052-63, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20508144

RESUMEN

KLF1 regulates a diverse suite of genes to direct erythroid cell differentiation from bipotent progenitors. To determine the local cis-regulatory contexts and transcription factor networks in which KLF1 operates, we performed KLF1 ChIP-seq in the mouse. We found at least 945 sites in the genome of E14.5 fetal liver erythroid cells which are occupied by endogenous KLF1. Many of these recovered sites reside in erythroid gene promoters such as Hbb-b1, but the majority are distant to any known gene. Our data suggests KLF1 directly regulates most aspects of terminal erythroid differentiation including production of alpha- and beta-globin protein chains, heme biosynthesis, coordination of proliferation and anti-apoptotic pathways, and construction of the red cell membrane and cytoskeleton by functioning primarily as a transcriptional activator. Additionally, we suggest new mechanisms for KLF1 cooperation with other transcription factors, in particular the erythroid transcription factor GATA1, to maintain homeostasis in the erythroid compartment.


Asunto(s)
Células Eritroides/metabolismo , Eritropoyesis/genética , Factores de Transcripción de Tipo Kruppel/genética , Animales , Apoptosis/genética , Secuencia de Bases , Citoesqueleto/genética , Membrana Eritrocítica/genética , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Expresión Génica , Globinas/biosíntesis , Globinas/genética , Hemo/biosíntesis , Hemo/genética , Ratones , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas
6.
Biol Reprod ; 89(2): 34, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23843232

RESUMEN

MicroRNAs are important regulators of developmental gene expression, but their contribution to fetal gonad development is not well understood. We have identified the evolutionarily conserved gonadal microRNAs miR-202-5p and miR-202-3p as having a potential role in regulating mouse embryonic gonad differentiation. These microRNAs are expressed in a sexually dimorphic pattern as the primordial XY gonad differentiates into a testis, with strong expression in Sertoli cells. In vivo, ectopic expression of pri-miR-202 in XX gonads did not result in molecular changes to the ovarian determination pathway. Expression of the primary transcript of miR-202-5p/3p remained low in XY gonads in a conditional Sox9-null mouse model, suggesting that pri-miR-202 transcription is downstream of SOX9, a transcription factor that is both necessary and sufficient for male sex determination. We identified the pri-miR-202 promoter that is sufficient to drive expression in XY but not XX fetal gonads ex vivo. Mutation of SOX9 and SF1 binding sites reduced ex vivo transactivation of the pri-miR-202 promoter, demonstrating that pri-miR-202 may be a direct transcriptional target of SOX9/SF1 during testis differentiation. Our findings indicate that expression of the conserved gonad microRNA, miR-202-5p/3p, is downstream of the testis-determining factor SOX9, suggesting an early role in testis development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Organogénesis/genética , Factor de Transcripción SOX9/metabolismo , Testículo/embriología , Animales , Diferenciación Celular/genética , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Regiones Promotoras Genéticas , Factor de Transcripción SOX9/genética , Células de Sertoli/citología , Células de Sertoli/metabolismo , Diferenciación Sexual/genética , Testículo/citología , Testículo/metabolismo , Transcripción Genética
7.
Biol Reprod ; 88(6): 143, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23616593

RESUMEN

MicroRNAs (miRNAs) have been shown to play key regulatory roles in a range of biological processes, including cell differentiation and development. To identify miRNAs that participate in gonad differentiation, a fundamental and tightly regulated developmental process, we examined miRNA expression profiles at the time of sex determination and during the early fetal differentiation of mouse testes and ovaries using high-throughput sequencing. We identified several miRNAs that were expressed in a sexually dimorphic pattern, including several members of the let-7 family, miR-378, and miR-140-3p. We focused our analysis on the most highly expressed, sexually dimorphic miRNA, miR-140-3p, and found that both miR-140-3p and its more lowly expressed counterpart, the previously annotated guide strand, miR-140-5p, are testis enriched and expressed in testis cords. Analysis of the miR-140-5p/miR-140-3p-null mouse revealed a significant increase in the number of Leydig cells in the developing XY gonad, strongly suggesting an important role for miR-140-5p/miR-140-3p in testis differentiation in mouse.


Asunto(s)
Diferenciación Celular/genética , Células Intersticiales del Testículo/citología , MicroARNs/metabolismo , Testículo/citología , Animales , Recuento de Células , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Testículo/embriología , Testículo/metabolismo
8.
Cancer Discov ; 13(10): 2228-2247, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37548590

RESUMEN

Therapies that enhance antitumor immunity have altered the natural history of many cancers. Consequently, leveraging nonoverlapping mechanisms to increase immunogenicity of cancer cells remains a priority. Using a novel enzymatic inhibitor of the RNA methyl-transferase METTL3, we demonstrate a global decrease in N6-methyladenosine (m6A) results in double-stranded RNA (dsRNA) formation and a profound cell-intrinsic interferon response. Through unbiased CRISPR screens, we establish dsRNA-sensing and interferon signaling are primary mediators that potentiate T-cell killing of cancer cells following METTL3 inhibition. We show in a range of immunocompetent mouse models that although METTL3 inhibition is equally efficacious to anti-PD-1 therapy, the combination has far greater preclinical activity. Using SPLINTR barcoding, we demonstrate that anti-PD-1 therapy and METTL3 inhibition target distinct malignant clones, and the combination of these therapies overcomes clones insensitive to the single agents. These data provide the mole-cular and preclinical rationale for employing METTL3 inhibitors to promote antitumor immunity in the clinic. SIGNIFICANCE: This work demonstrates that METTL3 inhibition stimulates a cell-intrinsic interferon response through dsRNA formation. This immunomodulatory mechanism is distinct from current immunotherapeutic agents and provides the molecular rationale for combination with anti-PD-1 immune-checkpoint blockade to augment antitumor immunity. This article is featured in Selected Articles from This Issue, p. 2109.


Asunto(s)
Interferones , Metiltransferasas , Animales , Ratones , Interferones/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Bicatenario
9.
Cancer Cell ; 40(10): 1190-1206.e9, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36179686

RESUMEN

There is increasing recognition of the prognostic significance of tumor cell major histocompatibility complex (MHC) class II expression in anti-cancer immunity. Relapse of acute myeloid leukemia (AML) following allogeneic stem cell transplantation (alloSCT) has recently been linked to MHC class II silencing in leukemic blasts; however, the regulation of MHC class II expression remains incompletely understood. Utilizing unbiased CRISPR-Cas9 screens, we identify that the C-terminal binding protein (CtBP) complex transcriptionally represses MHC class II pathway genes, while the E3 ubiquitin ligase complex component FBXO11 mediates degradation of CIITA, the principal transcription factor regulating MHC class II expression. Targeting these repressive mechanisms selectively induces MHC class II upregulation across a range of AML cell lines. Functionally, MHC class II+ leukemic blasts stimulate antigen-dependent CD4+ T cell activation and potent anti-tumor immune responses, providing fundamental insights into the graft-versus-leukemia effect. These findings establish the rationale for therapeutic strategies aimed at restoring tumor-specific MHC class II expression to salvage AML relapse post-alloSCT and also potentially to enhance immunotherapy outcomes in non-myeloid malignancies.


Asunto(s)
Proteínas F-Box , Leucemia Mieloide Aguda , Oxidorreductasas de Alcohol , Proteínas de Unión al ADN , Proteínas F-Box/genética , Antígenos HLA/genética , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Activación de Linfocitos , Proteína-Arginina N-Metiltransferasas/metabolismo , Recurrencia , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
10.
Nat Commun ; 11(1): 1792, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286289

RESUMEN

Continuous cancer growth is driven by subsets of self-renewing malignant cells. Targeting of uncontrolled self-renewal through inhibition of stem cell-related signaling pathways has proven challenging. Here, we show that cancer cells can be selectively deprived of self-renewal ability by interfering with their epigenetic state. Re-expression of histone H1.0, a tumor-suppressive factor that inhibits cancer cell self-renewal in many cancer types, can be broadly induced by the clinically well-tolerated compound Quisinostat. Through H1.0, Quisinostat inhibits cancer cell self-renewal and halts tumor maintenance without affecting normal stem cell function. Quisinostat also hinders expansion of cells surviving targeted therapy, independently of the cancer types and the resistance mechanism, and inhibits disease relapse in mouse models of lung cancer. Our results identify H1.0 as a major mediator of Quisinostat's antitumor effect and suggest that sequential administration of targeted therapy and Quisinostat may be a broadly applicable strategy to induce a prolonged response in patients.


Asunto(s)
Autorrenovación de las Células , Histonas/metabolismo , Ácidos Hidroxámicos/farmacología , Neoplasias/metabolismo , Neoplasias/patología , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Autorrenovación de las Células/efectos de los fármacos , Autorrenovación de las Células/genética , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ratones , Neoplasias/genética , Recurrencia
11.
Trends Cancer ; 3(5): 372-386, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28718414

RESUMEN

Epigenetic mechanisms have emerged as key players in cancer development which affect cellular states at multiple stages of the disease. During carcinogenesis, alterations in chromatin and DNA methylation resulting from genetic lesions unleash cellular plasticity and favor oncogenic cellular reprogramming. At later stages, during cancer growth and progression, additional epigenetic changes triggered by interaction with the microenvironment modulate cancer cell phenotypes and properties, and shape tumor architecture. We review here recent advances highlighting the interplay between epigenetics, genetics, and cell-to-cell signaling in cancer, with particular emphasis on mechanisms relevant for cancer stem cell formation (CSC) and function.


Asunto(s)
Plasticidad de la Célula/genética , Reprogramación Celular/genética , Epigénesis Genética/genética , Células Madre Neoplásicas/metabolismo , Humanos , Células Madre Neoplásicas/patología
12.
PLoS One ; 10(1): e0114932, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25629157

RESUMEN

Traditional gene targeting methods in mice are complex and time consuming, especially when conditional deletion methods are required. Here, we describe a novel technique for assessing gene function by injection of modified antisense morpholino oligonucleotides (MOs) into the heart of mid-gestation mouse embryos. After allowing MOs to circulate through the embryonic vasculature, target tissues were explanted, cultured and analysed for expression of key markers. We established proof-of-principle by partially phenocopying known gene knockout phenotypes in the fetal gonads (Stra8, Sox9) and pancreas (Sox9). We also generated a novel double knockdown of Gli1 and Gli2, revealing defects in Leydig cell differentiation in the fetal testis. Finally, we gained insight into the roles of Adamts19 and Ctrb1, genes of unknown function in sex determination and gonadal development. These studies reveal the utility of this method as a means of first-pass analysis of gene function during organogenesis before committing to detailed genetic analysis.


Asunto(s)
Desarrollo Embrionario/genética , Marcación de Gen/métodos , Morfolinos/administración & dosificación , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Quimotripsina/genética , Quimotripsina/metabolismo , Embrión de Mamíferos , Femenino , Técnicas de Inactivación de Genes , Gónadas/embriología , Gónadas/metabolismo , Inyecciones , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Organogénesis/genética , Páncreas/embriología , Páncreas/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Testículo/embriología , Testículo/metabolismo , Proteína con Dedos de Zinc GLI1
13.
Curr Top Dev Biol ; 90: 231-62, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20691851

RESUMEN

In mammals, biological differences between males and females, which influence many aspects of their physical, social, and psychological environments, are solely determined genetically. In the presence of a Y chromosome, the gonadal primordium will differentiate into a testis, whereas in the absence of the Y chromosome an ovary will develop. Testis and ovary subsequently direct the differentiation of all secondary sex characteristics down the male and female pathway, respectively. The male-determining factor on the Y chromosome, SRY, was identified some 20 years ago. Since then, significant progress has been made toward understanding the molecular and cellular pathways that result in the formation of a testis. Here, we review what is known about testis differentiation in mice and humans, with reference to other species where appropriate.


Asunto(s)
Testículo/citología , Animales , Diferenciación Celular/fisiología , Linaje de la Célula , Células Endoteliales/citología , Células Endoteliales/fisiología , Femenino , Células Germinativas/citología , Células Germinativas/fisiología , Humanos , Células Intersticiales del Testículo/citología , Células Intersticiales del Testículo/fisiología , Masculino , Morfogénesis/fisiología , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Células de Sertoli/citología , Células de Sertoli/fisiología , Proteína de la Región Y Determinante del Sexo/genética , Proteína de la Región Y Determinante del Sexo/metabolismo , Testículo/embriología , Testículo/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA