Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(12): e2317078121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466848

RESUMEN

Covalent bonding interactions determine the energy-momentum (E-k) dispersion (band structure) of solid-state materials. Here, we show that noncovalent interactions can modulate the E-k dispersion near the Fermi level of a low-dimensional nanoscale conductor. We demonstrate that low energy band gaps may be opened in metallic carbon nanotubes through polymer wrapping of the nanotube surface at fixed helical periodicity. Electronic spectral, chiro-optic, potentiometric, electronic device, and work function data corroborate that the magnitude of band gap opening depends on the nature of the polymer electronic structure. Polymer dewrapping reverses the conducting-to-semiconducting phase transition, restoring the native metallic carbon nanotube electronic structure. These results address a long-standing challenge to develop carbon nanotube electronic structures that are not realized through disruption of π conjugation, and establish a roadmap for designing and tuning specialized semiconductors that feature band gaps on the order of a few hundred meV.

2.
Chem Rev ; 124(4): 1950-1991, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38364021

RESUMEN

Since the initial landmark study on the chiral induced spin selectivity (CISS) effect in 1999, considerable experimental and theoretical efforts have been made to understand the physical underpinnings and mechanistic features of this interesting phenomenon. As first formulated, the CISS effect refers to the innate ability of chiral materials to act as spin filters for electron transport; however, more recent experiments demonstrate that displacement currents arising from charge polarization of chiral molecules lead to spin polarization without the need for net charge flow. With its identification of a fundamental connection between chiral symmetry and electron spin in molecules and materials, CISS promises profound and ubiquitous implications for existing technologies and new approaches to answering age old questions, such as the homochiral nature of life. This review begins with a discussion of the different methods for measuring CISS and then provides a comprehensive overview of molecules and materials known to exhibit CISS-based phenomena before proceeding to identify structure-property relations and to delineate the leading theoretical models for the CISS effect. Next, it identifies some implications of CISS in physics, chemistry, and biology. The discussion ends with a critical assessment of the CISS field and some comments on its future outlook.

3.
Proc Natl Acad Sci U S A ; 119(30): e2202650119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858429

RESUMEN

Controlled reduction of oxygen is important for developing clean energy technologies, such as fuel cells, and is vital to the existence of aerobic organisms. The process starts with oxygen in a triplet ground state and ends with products that are all in singlet states. Hence, spin constraints in the oxygen reduction must be considered. Here, we show that the electron transfer efficiency from chiral electrodes to oxygen (oxygen reduction reaction) is enhanced over that from achiral electrodes. We demonstrate lower overpotentials and higher current densities for chiral catalysts versus achiral ones. This finding holds even for electrodes composed of heavy metals with large spin-orbit coupling. The effect results from the spin selectivity conferred on the electron current by the chiral assemblies, the chiral-induced spin selectivity effect.


Asunto(s)
Electrones , Oxígeno , Catálisis , Electrodos , Transporte de Electrón , Oxidación-Reducción , Oxígeno/química
4.
J Chem Phys ; 159(13)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37791627

RESUMEN

We discuss the possibility of using circularly polarized luminescence (CPL) as a tool to probe individual triplet spin sublevels that are populated nonadiabatically following photoexcitation. This study is motivated by a mechanism proposed for chirality-induced spin selectivity in which coupled electronic-nuclear dynamics may lead to a non-statistical population of the three triplet sublevels in chiral systems. We find that low-temperature CPL should aid in quantifying the exact spin state/s populated through coupled electronic-nuclear motion in chiral molecules.

5.
J Chem Phys ; 156(17): 174113, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525658

RESUMEN

We investigate a spin-boson inspired model of electron transfer, where the diabatic coupling is given by a position-dependent phase, eiWx. We consider both equilibrium and nonequilibrium initial conditions. We show that, for this model, all equilibrium results are completely invariant to the sign of W (to infinite order). However, the nonequilibrium results do depend on the sign of W, suggesting that photo-induced electron transfer dynamics with spin-orbit coupling can exhibit electronic spin polarization (at least for some time).

6.
Proc Natl Acad Sci U S A ; 116(13): 5931-5936, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30846547

RESUMEN

Biological structures rely on kinetically tuned charge transfer reactions for energy conversion, biocatalysis, and signaling as well as for oxidative damage repair. Unlike man-made electrical circuitry, which uses metals and semiconductors to direct current flow, charge transfer in living systems proceeds via biomolecules that are nominally insulating. Long-distance charge transport, which is observed routinely in nucleic acids, peptides, and proteins, is believed to arise from a sequence of thermally activated hopping steps. However, a growing number of experiments find limited temperature dependence for electron transfer over tens of nanometers. To account for these observations, we propose a temperature-independent mechanism based on the electric potential difference that builds up along the molecule as a precursor of electron transfer. Specifically, the voltage changes the nature of the electronic states away from being sharply localized so that efficient resonant tunneling across long distances becomes possible without thermal assistance. This mechanism is general and is expected to be operative in molecules where the electronic states densely fill a wide energy window (on the scale of electronvolts) above or below the gap between the highest-occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). We show that this effect can explain the temperature-independent charge transport through DNA and the strongly voltage-dependent currents that are measured through organic semiconductors and peptides.


Asunto(s)
Transporte de Electrón , Ácidos Nucleicos/metabolismo , ADN/metabolismo , Conductividad Eléctrica , Metabolismo Energético , Cinética , Modelos Teóricos , Péptidos/metabolismo , Proteínas/metabolismo
7.
Nano Lett ; 21(15): 6496-6503, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34297582

RESUMEN

The detection of enantiopurity for small sample quantities is crucial, particularly in the pharmaceutical industry; however, existing methodologies rely on specific chiral recognition elements, or complex optical systems, limiting its utility. A nanoscale chirality sensor, for continuously monitoring molecular chirality using an electric circuit readout, is presented. This device design represents an alternative real-time scalable approach for chiral recognition of small quantity samples (less than 103 adsorbed molecules). The active device component relies on a gold nanofloret hybrid structure, i.e., a high aspect ratio semiconductor-metal hybrid nanosystem in which a SiGe nanowire tip is selectively decorated with a gold metallic cap. The tip mechanically touches a counter electrode to generate a nanojunction, and upon exposure to molecules, a metal-molecule-metal junction is formed. Adsorption of chiral molecules at the gold tip induces chirality in the localized plasmonic resonance at the electrode-tip junction and manifests in an enantiospecific current response.


Asunto(s)
Nanocables , Resonancia por Plasmón de Superficie , Electrónica , Oro , Estereoisomerismo
8.
Biochemistry ; 60(17): 1368-1378, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33870693

RESUMEN

The flow of charge through molecules is central to the function of supramolecular machines, and charge transport in nucleic acids is implicated in molecular signaling and DNA repair. We examine the transport of electrons through nucleic acids to understand the interplay of resonant and nonresonant charge carrier transport mechanisms. This study reports STM break junction measurements of peptide nucleic acids (PNAs) with a G-block structure and contrasts the findings with previous results for DNA duplexes. The conductance of G-block PNA duplexes is much higher than that of the corresponding DNA duplexes of the same sequence; however, they do not display the strong even-odd dependence conductance oscillations found in G-block DNA. Theoretical analysis finds that the conductance oscillation magnitude in PNA is suppressed because of the increased level of electronic coupling interaction between G-blocks in PNA and the stronger PNA-electrode interaction compared to that in DNA duplexes. The strong interactions in the G-block PNA duplexes produce molecular conductances as high as 3% G0, where G0 is the quantum of conductance, for 5 nm duplexes.


Asunto(s)
ADN/metabolismo , Modelos Biológicos , Transporte Biológico , Ácidos Nucleicos de Péptidos/metabolismo
9.
Acc Chem Res ; 53(11): 2659-2667, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33044813

RESUMEN

The electron's spin, its intrinsic angular momentum, is a quantum property that plays a critical role in determining the electronic structure of molecules. Despite its importance, it is not used often for controlling chemical processes, photochemistry excluded. The reason is that many organic molecules have a total spin zero, namely, all the electrons are paired. Even for molecules with high spin multiplicity, the spin orientation is usually only weakly coupled to the molecular frame of nuclei and hence to the molecular orientation. Therefore, controlling the spin orientation usually does not provide a handle on controlling the geometry of the molecular species during a reaction. About two decades ago, however, a new phenomenon was discovered that relates the electron's spin to the handedness of chiral molecules and is now known as the chiral induced spin selectivity (CISS) effect. It was established that the efficiency of electron transport through chiral molecules depends on the electron spin and that it changes with the enantiomeric form of a molecule and the direction of the electron's linear momentum. This property means that, for chiral molecules, the electron spin is strongly coupled to the molecular frame. Over the past few years, we and others have shown that this feature can be used to provide spin-control over chemical reactions and to perform enantioseparations with magnetic surfaces.In this Account, we describe the CISS effect and demonstrate spin polarization effects on chemical reactions. Explicitly, we describe a number of processes that can be controlled by the electron's spin, among them the interaction of chiral molecules with ferromagnetic surfaces, the multielectron oxidation of water, and enantiospecific electrochemistry. Interestingly, it has been shown that the effect also takes place in inorganic chiral oxides like copper oxide, aluminum oxide, and cobalt oxide. The CISS effect results from the coupling between the electron linear momentum and its spin in a chiral system. Understanding the implications of this interaction promises to reveal a previously unappreciated role for chirality in biology, where chiral molecules are ubiquitous, and opens a new avenue into spin-controlled processes in chemistry.

11.
Proc Natl Acad Sci U S A ; 114(10): 2474-2478, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28228525

RESUMEN

Noncovalent interactions between molecules are key for many biological processes. Necessarily, when molecules interact, the electronic charge in each of them is redistributed. Here, we show experimentally that, in chiral molecules, charge redistribution is accompanied by spin polarization. We describe how this spin polarization adds an enantioselective term to the forces, so that homochiral interaction energies differ from heterochiral ones. The spin polarization was measured by using a modified Hall effect device. An electric field that is applied along the molecules causes charge redistribution, and for chiral molecules, a Hall voltage is measured that indicates the spin polarization. Based on this observation, we conjecture that the spin polarization enforces symmetry constraints on the biorecognition process between two chiral molecules, and we describe how these constraints can lead to selectivity in the interaction between enantiomers based on their handedness. Model quantum chemistry calculations that rigorously enforce these constraints show that the interaction energy for methyl groups on homochiral molecules differs significantly from that found for heterochiral molecules at van der Waals contact and shorter (i.e., ∼0.5 kcal/mol at 0.26 nm).


Asunto(s)
Ácidos Grasos/química , Oligopéptidos/química , Compuestos de Sulfhidrilo/química , Técnicas Electroquímicas , Teoría Cuántica , Marcadores de Spin , Electricidad Estática , Estereoisomerismo
12.
Angew Chem Int Ed Engl ; 59(4): 1653-1658, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31621990

RESUMEN

We show that enantioselective reactions can be induced by the electron spin itself and that it is possible to replace a conventional enantiopure chemical reagent by spin-polarized electrons that provide the chiral bias for enantioselective reactions. Three examples of enantioselective chemistry resulting from electron-spin polarization are presented. One demonstrates the enantioselective association of a chiral molecule with an achiral self-assembled monolayer film that is spin-polarized, while the other two show that the chiral bias provided by the electron helicity can drive both reduction and oxidation in enantiospecific electrochemical reactions. In each case, the enantioselectivity does not result from enantiospecific interactions of the molecule with the ferromagnetic electrode but from the polarized spin that crosses the interface between the substrate and the molecule. Furthermore, the direction of the electron-spin polarization defines the handedness of the enantioselectivity. This work demonstrates a new mechanism for realizing enantioselective chemistry.

13.
Small ; 15(1): e1804557, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30462882

RESUMEN

The rapid growth in demand for data and the emerging applications of Big Data require the increase of memory capacity. Magnetic memory devices are among the leading technologies for meeting this demand; however, they rely on the use of ferromagnets that creates size reduction limitations and poses complex materials requirements. Usually magnetic memory sizes are limited to 30-50 nm. Reducing the size even further, to the ≈10-20 nm scale, destabilizes the magnetization and its magnetic orientation becomes susceptible to thermal fluctuations and stray magnetic fields. In the present work, it is shown that 10 nm single domain ferromagnetism can be achieved. Using asymmetric adsorption of chiral molecules, superparamagnetic iron oxide nanoparticles become ferromagnetic with an average coercive field of ≈80 Oe. The asymmetric adsorption of molecules stabilizes the magnetization direction at room temperature and the orientation is found to depend on the handedness of the chiral molecules. These studies point to a novel method for the miniaturization of ferromagnets (down to ≈10 nm) using established synthetic protocols.

14.
Acc Chem Res ; 51(10): 2565-2573, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30289241

RESUMEN

The optical and electronic properties of semiconductor quantum dots (QDs) make them attractive candidates for applications in photovoltaics, spintronics, photocatalysis, and optoelectronics. Understanding how to control the flow of charge in QD assemblies is essential for realizing novel applications. This Account explores some unique characteristics of charge transport in QD dyads, triads, and their assemblies. The emerging features of these assemblies that provide new opportunities to manipulate charge flow at the nanoscale are (1) cascading energy landscapes and band offsets to inhibit charge recombination, (2) electrostatic fields that direct charge flow through QD-QD and QD-conjugated polymer junctions, and (3) QD chirality and chiral imprinting that promotes vectorial electron and spin selective transport. Charge flow kinetics is determined by a combination of familiar electron transfer parameters (reaction free energy, reorganization energy, and electronic coupling), donor and acceptor electronic densities of states, and internal electric fields. Electron transfer and electronic structure theory, combined with kinetic modeling, place the measured kinetics of QD electron transfer donor-acceptor assemblies into a unified conceptual context. The experimental transfer rates measured in these systems depend upon structure and the internal electric fields that are present in the assemblies. A negatively charged donor and positively charged acceptor, for example, facilitates (inhibits) electron (hole) transfer, while an electric field of opposite orientation (reversal of charges) inhibits (promotes) electron (hole) transfer. These and other emerging rules that govern charge flow in NP assemblies provide a strategy to design the directionality and yield of interfacial charge transport. Chirality at the nanoscale can induce spin selective charge transport, providing new ways to direct charge (and spin) flow in QD assemblies. Magnetoresistance and magnetic conductive probe atomic force microscopy experiments show spin selective electron transport for chirally imprinted QD assemblies. Photoinduced electron transfer from achiral donor-QDs to chiral acceptor-QDs depends on the electron spin and chiroptical properties of the acceptor-QDs. These assemblies show transport characteristics that correlate with features of the QDs' circular dichroism spectra, presenting intriguing challenges to theory, and indicating that spectroscopic signatures may assist in the design and diagnosis of functional molecular assemblies. Theoretical and experimental studies of charge transport in well-defined QD assemblies are establishing design principles for vectorial charge transport and are also refining questions surrounding the mechanism and control of these processes. These intensified efforts are forging links between fundamental discoveries regarding mechanism and practical applications for these novel assembled nanostructures.

16.
Small ; 14(3)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29193670

RESUMEN

Metal oxide/carbonaceous nanomaterials are promising candidates for energy-storage applications. However, inhomogeneous mass and charge transfer across the electrode/electrolyte interface due to unstable metal oxide/carbonaceous nanomaterial synthesis limit their performance in supercapacitors. Here, it is shown that the above problems can be mitigated through stable low-current electrodeposition of MnO2 on superaligned electrospun carbon nanofibers (ECNFs). The key to this approach is coupling a self-designed four steel poles collector for aligned ECNFs and a constant low-current (40 µA) electrodeposition technique to form a uniform Na+ -induced α-MnO2 film which proceeds by a time-dependent growth mechanism involving cluster-"kebab" structures and ending with a compact, uniform MnO2 film for high-performance energy storage.

17.
Phys Chem Chem Phys ; 20(2): 1091-1097, 2018 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-29238765

RESUMEN

We discuss spin injection and spin valves, which are based on organic and biomolecules, that offer the possibility to overcome some of the limitations of solid-state devices, which are based on ferromagnetic metal electrodes. In particular, we discuss spin filtering through bacteriorhodopsin in a solid state biomolecular spin valve that is based on the chirality induced spin selectivity (CISS) effect and shows a magnetoresistance of ∼2% at room temperature. The device is fabricated using a layer of bacteriorhodopsin (treated with n-octyl-thioglucoside detergent: OTG-bR) that is adsorbed on a cysteamine functionalized gold electrode and capped with a magnesium oxide layer as a tunneling barrier, upon which a Ni top electrode film is placed and used as a spin analyzer. The bR based spin valves show an antisymmetric magnetoresistance response when a magnetic field is applied along the direction of the current flow, whereas they display a positive symmetric magnetoresistance curve when a magnetic field is applied perpendicular to the current direction.


Asunto(s)
Bacteriorodopsinas/química , Imanes , Electrodos , Electrones , Oro , Campos Magnéticos , Tioglucósidos
18.
Chimia (Aarau) ; 72(6): 394-398, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29941075

RESUMEN

This review describes a new perspective on the role that electron spin plays in the intermolecular forces between two chiral molecules and between chiral molecules and surfaces. This different role of the spin arises from the chiral induced spin selectivity (CISS) effect which is manifest when electrons are moving in chiral molecules. Namely, it has been shown that as chiral molecules are charge polarized, the electron displacement is accompanied by spin polarization. The spin direction associated with each electric pole depends on the specific handedness of the molecule. Thus, the consideration of the dispersive forces between two molecules, or between a molecule and a substrate, must include the spin polarization which adds an enantioselective electronic term to the interaction potential. We review recent experiments that show the relation between charge polarization and spin polarization in chiral molecules. The spin polarization also affects the direction of the ferromagnetic substrate magnetic moment of a surface, upon which the chiral molecules are adsorbed.

19.
J Am Chem Soc ; 139(26): 9038-9043, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28609095

RESUMEN

Electron spin and molecular chirality are emerging as factors that can be used effectively to direct charge flow at the molecular scale. We report order of magnitude effects of molecular chirality on electron-transfer rates between quantum dots (QDs) in chiral QD assemblies. Indeed, both the circular polarization of the light that excites the electron donor and the imprinted chirality of the acceptor QDs affect the dot-to-dot electron-transfer kinetics. We define a polarization for the electron-transfer rate constant and show that it correlates with the strength of the acceptor QD circular dichroism (CD) spectrum. These findings imply that the CD strength of the QD exciton transition(s) may be used as a predictor for the spin-dependent electron transfer, indicating that chiral imprinting of the dots may lie at the origin of this phenomenon.

20.
J Am Chem Soc ; 139(19): 6726-6735, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28434220

RESUMEN

Scanning tunneling microscope break junction measurements are used to examine how the molecular conductance of nucleic acids depends on the composition of their backbone and the linker group to the electrodes. Molecular conductances of 10 base pair long homoduplexes of DNA, aeg-PNA, γ-PNA, and a heteroduplex of DNA/aeg-PNA with identical nucleobase sequence were measured. The molecular conductance was found to vary by 12 to 13 times with the change in backbone. Computational studies show that the molecular conductance differences between nucleic acids of different backbones correlate with differences in backbone structural flexibility. The molecular conductance was also measured for duplexes connected to the electrode through two different linkers, one directly to the backbone and one directly to the nucleobase stack. While the linker causes an order-of-magnitude increase in the overall conductance for a particular duplex, the differences in the electrical conductance with backbone composition are preserved. The highest molecular conductance value, 0.06G0, was measured for aeg-PNA duplexes with a base stack linker. These findings reveal an important new strategy for creating longer and more complex electroactive, nucleic acid assemblies.


Asunto(s)
ADN/química , Conductividad Eléctrica , Ácidos Nucleicos de Péptidos/química , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA