Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
ACS Energy Lett ; 6(12): 4365-4373, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34917771

RESUMEN

Fast neutron imaging is a nondestructive technique for large-scale objects such as nuclear fuel rods. However, present detectors are based on conventional phosphors (typically microcrystalline ZnS:Cu) that have intrinsic drawbacks, including light scattering, γ-ray sensitivity, and afterglow. Fast neutron imaging with colloidal nanocrystals (NCs) was demonstrated to eliminate light scattering. While lead halide perovskite (LHP) FAPbBr3 NCs emitting brightly showed poor spatial resolution due to reabsorption, the Mn2+-doped CsPb(BrCl)3 NCs with oleyl ligands had higher resolution because of large apparent Stokes shift but insufficient concentration for high light yield. In this work, we demonstrate a NC scintillator that features simultaneously high quantum yields, high concentrations, and a large apparent Stokes shift. In particular, we use long-chain zwitterionic ligand capping in the synthesis of Mn2+-doped CsPb(BrCl)3 NCs that allows for attaining very high concentrations (>100 mg/mL) of colloids. The emissive behavior of these ASC18-capped NCs was carefully controlled by compositional tuning that permitted us to select for high quantum yields (>50%) coinciding with Mn-dominated emission for minimal self-absorption. These tailored Mn2+:CsPb(BrCl)3 NCs demonstrated over 8 times brighter light yield than their oleyl-capped variants under fast neutron irradiation, which is competitive with that of near-unity FAPbBr3 NCs, while essentially eliminating self-absorption. Because of their rare combination of concentrations above 100 mg/mL and high quantum yields, along with minimal self-absorption for good spatial resolution, Mn2+:CsPb(BrCl)3 NCs have the potential to displace ZnS:Cu as the leading scintillator for fast neutron imaging.

2.
ACS Photonics ; 8(11): 3357-3364, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34820475

RESUMEN

The fast neutron imaging technique with recoil proton detection harbors significant potential for imaging of thick, large-scale objects containing high-Z elements. However, the challenge to find efficient fast neutron scintillators with high spatial resolution is ongoing. The list of requirements for such scintillators is long and demanding: a proton-rich, scattering-free material combining high light yield with the absence of light reabsorption. To meet these challenges, we look for a suitable material among a rising class of 0D organic-inorganic Pb(II) halide hybrids. The use of large organic cations, e.g., trihexyltetradecylphosphonium, results in room-temperature ionic liquids that combine highly Stokes-shifted (up to 1.7 eV), reabsorption-free, and efficient emission (photoluminescence quantum yield up to 60%) from molecularly small and dense (PbX2 molar fraction up to 0.33) emitting centers. We investigate the optical properties of the resulting ionic liquids and showcase their utility as fast neutron imaging scintillators. Concomitantly with good light yield, such fast-neutron scintillators exhibit both higher spatial resolution and lower γ-ray sensitivity compared with commercial ZnS:Cu-based screens.

3.
J Imaging ; 6(12)2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34460531

RESUMEN

We performed a study of the initial and long term light yield of different scintillation screen mixtures for neutron imaging during constant neutron irradiation. We evaluated the light yield during different neutron flux levels as well as at different temperatures. As high frame rate imaging is a topic of interest in the neutron imaging community, the decay characteristics of scintillation screens are of interest as well. Hence, we also present and discuss the decay behavior of the different scintillation screen mixtures on a time scale of seconds. We have found that the decay time of ZnS:Cu/6LiF excited with a high neutron flux is potentially much longer than typically stated. While most of the tested scintillation screens do not provide a significant improvement over currently used scintillation screen materials, Zn(Cd)S:Ag/6LiF seems to be a good candidate for high frame rate imaging due to its high light yield, long-term stability as well as fast decay compared to the other evaluated scintillation screens.

4.
ACS Nano ; 14(11): 14686-14697, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-32897688

RESUMEN

Fast neutrons offer high penetration capabilities for both light and dense materials due to their comparatively low interaction cross sections, making them ideal for the imaging of large-scale objects such as large fossils or as-built plane turbines, for which X-rays or thermal neutrons do not provide sufficient penetration. However, inefficient fast neutron detection limits widespread application of this technique. Traditional phosphors such as ZnS:Cu embedded in plastics are utilized as scintillators in recoil proton detectors for fast neutron imaging. However, these scintillation plates exhibit significant light scattering due to the plastic-phosphor interface along with long-lived afterglow (on the order of minutes), and therefore alternative solutions are needed to increase the availability of this technique. Here, we utilize colloidal nanocrystals (NCs) in hydrogen-dense solvents for fast neutron imaging through the detection of recoil protons generated by neutron scattering, demonstrating the efficacy of nanomaterials as scintillators in this detection scheme. The light yield, spatial resolution, and neutron-vs-gamma sensitivity of several chalcogenide (CdSe and CuInS2)-based and perovskite halide-based NCs are determined, with only a short-lived afterglow (below the order of seconds) observed for all of these NCs. FAPbBr3 NCs exhibit the brightest total light output at 19.3% of the commercial ZnS:Cu(PP) standard, while CsPbBrCl2:Mn NCs offer the best spatial resolution at ∼2.6 mm. Colloidal NCs showed significantly lower gamma sensitivity than ZnS:Cu; for example, 79% of the FAPbBr3 light yield results from neutron-induced radioluminescence and hence the neutron-specific light yield of FAPbBr3 is 30.4% of that of ZnS:Cu(PP). Concentration and thickness-dependent measurements highlight the importance of increasing concentrations and reducing self-absorption, yielding design principles to optimize and foster an era of NC-based scintillators for fast neutron imaging.

5.
Beilstein J Nanotechnol ; 8: 2615-2624, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29259876

RESUMEN

The synthesis, chemical and physical properties of [{AgO2CCH2OMe} n ] (1) and [{AgO2CCH2OMe(PPh3)} n ] (2) are reported. Consecutive reaction of AgNO3 with HO2CCH2OMe gave 1, which upon treatment with PPh3 produced 2. Coordination compound 2 forms a 1D coordination polymer in the solid state as evidenced by single crystal X-ray structure analysis. The coordination geometry at Ag+ is of the [3 + 1] type, whereby the carboxylate anions act as bridging ligands. The formation of PPh3-Ag(I) coordinative bonds results in distorted T-shaped AgPO2 units, which are stabilized further by an additional O-Ag dative bond. TG and TG-MS measurements show that 1 and 2 decompose at 190-250 °C (1) and 260-300 °C (2) via decarboxylation, involving Ag-P (2), C-C and C-O bond cleavages to give elemental silver as confirmed by PXRD studies. In order to verify if polymeric 2 is suitable as a FEBID precursor for silver deposition, its vapor pressure was determined (p170 °C = 5.318 mbar, ∆Hvap = 126.1 kJ mol-1), evincing little volatility. Also EI and ESI mass spectrometric studies were carried out. The dissociation of the silver(I) compound 2 under typical electron-driven FEBID conditions was studied by DFT (B3LYP) calculations on monomeric [AgO2CCH2OMe(PPh3)]. At an energy of the secondary electrons up to 0.8 eV elimination of PPh3 occurs, giving Ag+ and O2CCH2OMe-. Likewise, by release of PPh3 from [AgO2CCH2OMe(PPh3)] the fragment [AgO2CCH2OMe]- is formed from which Ag+ and O2CCH2OMe- is generated, further following the first fragmentation route. However, at 1.3 eV the initial step is decarboxylation giving [AgCH2OMe(PPh3)], followed by Ag-P and Ag-C bond cleavages.

6.
Angew Chem Int Ed Engl ; 40(20): 3846-3849, 2001 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29712147

RESUMEN

Through isoelectronic replacement of the oxygen atoms in SO42- ions by one CH2 and three NtBu groups one arrives formally at the dianion H2 CS(NtBu)32- , which has been isolated for the first time in the form of the sulfur(VI) ylide complex [(tmeda)2 Li2 {CH2 S(NtBu)3 }]. Deprotonation of the S-bonded methyl group in the triimidosulfonate MeS(NtBu)3- ion provides facile access in good yields. Hydrolysis favors the formation of the triimidosulfate [{(tmeda)Li2 [OS(NtBu)3 ]}3 ] and methane, and not, as one might expect, diimidomethylenesulfate and the amine. tmeda=Me2 NCH2 CH2 NMe2 .

7.
Dalton Trans ; 43(21): 7868-88, 2014 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-24705682

RESUMEN

The preparation of the shape-persistent carbosilane-functionalized porphyrins H2TPP(4-SiRR'Me)4, Zn(II)-TPP(4-SiRR'Me)4 (R = R' = Me, CH2CH=CH2, CH2CH2CH2OH; R = Me, R' = CH2CH=CH2, CH2CH2CH2OH; TPP = tetraphenyl porphyrin), H2TPP(4-Si(C6H4-1,4-SiRR'Me)3)4, and Zn(II)-TPP(4-Si(C6H4-1,4-SiRR'Me)3)4 (R = R' = Me, CH2CH=CH2; R = Me, R' = CH2CH[double bond, length as m-dash]CH2) using the Lindsey condensation methodology is described. For a series of five samples their structures in the solid state were determined by single crystal X-ray structure analysis. The appropriate 0th and 1st generation porphyrin-based 1,4-phenylene carbosilanes form 2D and 3D supramolecular network structures, primarily controlled by either π-π interactions (between pyrrole units and neighboring phenylene rings) or directional molecular hydrogen recognition and zinc-oxygen bond formation in the appropriate hydroxyl-functionalized molecules. UV-Vis spectroscopic studies were carried out in order to analyze the effect of the dendritic branches on the optical properties of the porphyrin ring.

9.
Dalton Trans ; 39(46): 11235-47, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-20967327

RESUMEN

Metal-organics [((RO)(3)P)(m)CuO(2)CCF(3)] (R = CH(3): 11a, m = 1; 11b, m = 2; 11c, m = 3. R = CH(2)CH(3): 12a, m = 1; 12b, m = 2; 12c, m = 3. R = CH(2)CF(3): 13a, m = 1; 13b, m = 2; 13c, m = 3) are either accessible by the reaction of [((RO)(3)P)(m)CuCl] (R = CH(3): 5a, m = 1; 5b, m = 2; 5c, m = 3. R = CH(2)CH(3): 6a, m = 1; 6b, m = 2; 6c, m = 3) with [KO(2)CCF(3)] (7), or treatment of [Cu(2)O] (8) with HO(2)CCF(3) (9) and P(OR)(3) (2, R = CH(3); 3, R = CH(2)CH(3); 4, R = CH(2)CF(3)). (31)P{(1)H} NMR spectra [((CH(3)O)(3)P)(m)CuO(2)CCF(3)] (m = 1, 1.5, 2, 2.5, 3, 3.5, and 4) have been studied at 25 and -80 °C showing phosphite ligand exchange in solution. The molecular structures of 11a and 13a-13c in the solid state are reported. Complexes 11a and 13a are tetramers featuring µ-η(2)(1κO:2κO')- and µ(3)-η(2)(1κO:2κO':3κO')-(11a) or µ(3)-η(2)(1κO:2κO':3κO')-bonded O(2)CCF(3) ligands (13a) with the Cu(I) ions being part of CuPO(2) and CuPO(3) units (11a), while in 13a solely a CuPO(3) moiety is present. Skeletal isomerism of 11a vs. 13a is discussed. Compound 13b is dimeric ({CuP(2)O(2)}(2)) with pseudo-tetrahedral Cu environments and µ-η(2)(1κO:2κO')O(2)CCF(3) functionalities. In monomeric 13c the O(2)CCF(3) ligand is η(1)(κO)-bonded to a tetra-coordinated Cu(i) ion. The thermal solid state properties of 11, 12 and 13 were studied by Thermo Gravimetry (TG). These complexes decompose by phosphite elimination, decarboxylation and dealkylation. Hot-wall Chemical Vapour Deposition (CVD) experiments were carried out at 380 °C using 11c as precursor for the deposition of copper onto pieces of TiN-coated oxidized silicon substrates. Copper layers of high purity were obtained with grain sizes between 200-1200 nm.

13.
Dalton Trans ; (37): 5089-98, 2008 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-18802625

RESUMEN

Two mononuclear bis(oxamato) complexes with the formula [nBu4N]2[M(2,3-acbo)] (M=Ni (), Cu (), with acbo=anthra-9,10-chinone-2,3-bis(oxamato) have been synthesized starting from symmetric diethyl N,N'-anthra-9,10-chinone-2,3-bis(oxamate) (, 2,3-acboH2Et2). The crystal structures of and have been determined, verifying that the transition metal ions are eta4(kappa2N,kappa2O) coordinated by the [2,3-acbo]4- ligands. Using the asymmetric diethyl N,N'-anthra-9,10-chinone-1,2-bis(oxamate) (, 1,2-acboH2Et2) leads, under otherwise identical reaction conditions, to the novel bis(oxamato) complex [(n)Bu4N]2[Ni(1,2-acbo)] () whereby in the case of Cu(II) the derivate [nBu4N]2[Cu(aibo)2] () (aibo=anthra[1,2-d]-(imidazole-2-carboxylato)-6,11-dione) has been obtained. The crystal structures of and have been determined, displaying that the Ni(II) ion of is eta4(kappa2N,kappa2O) coordinated by the [1,2-acbo]4- ligand. The Cu(II) ion of is coordinated by two [aibo]2- ligands, giving rise to an approximately square-planar trans-bis(aibo-N,O) arrangement. Using the symmetric diethyl N,N'-4,5-dinitro-o-phenylene-bis(oxamate) (, niboH2Et2), possessing strongly electron withdrawing NO2-groups, leads under otherwise identical reaction conditions to the bis(oxamato) complex [nBu4N]2[Ni(nibo)] (), whereby in the case of Cu(II) the derivate [nBu4N]2[Cu(niqo)2] () (niqo=7,8-dinitro-2,3-quinoxalinedionato) has been obtained. The crystal structures of and have been determined, ensuring that the Ni(II) ion of is eta(4)(kappa2N,kappa2O) coordinated by the [nibo]4- ligand. The Cu(II) ion of is coordinated by four oxygen atoms of two [niqo]2- ligands, giving rise to an approximately square-planar coordination geometry.


Asunto(s)
Antracenos/química , Compuestos Organometálicos/síntesis química , Ácido Oxámico/análogos & derivados , Ácido Oxámico/química , Elementos de Transición/química , Cristalografía por Rayos X , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/química , Estereoisomerismo
14.
J Org Chem ; 72(12): 4328-39, 2007 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-17508761

RESUMEN

A series of stilbeneboronate pinacol cyclic esters, containing none to three nitro groups, have been synthesized by various olefination reactions and characterized by X-ray single-crystal structure analysis. A stilbeneboronate ester bearing electron-acceptor groups experiences transition to a push-pull pi-electron system upon complexation with one fluoride ion at the boron atom. The UV-vis absorption maxima of the presented nitro-substituted stilbeneboronate esters are red-shifted upon addition of fluoride ions, indicating this binding event. The enhancement of the polarity of the investigated compounds and the changes in the electronic system were investigated by UV-vis absorption spectroscopy and solvatochromism. Additionally, studies were performed by natural bond orbital (NBO) analysis and RI-CC2 calculations of the vertical excitation energies. The synergism of fluoride ion complexation and solvation upon the UV-vis band shift is interpreted in terms of linear solvation energy relationships (LSERs) using the Kamlet-Taft solvent parameter set. It is found that the UV-vis absorption of the fluoro-boronates is strongly dependent on the solvents hydrogen-bond donating ability.

15.
J Org Chem ; 71(20): 7850-3, 2006 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16995696

RESUMEN

Activation of different benzophenone derivatives with triflic anhydride for electrophilic aromatic substitution of 5-phenylbarbituric acids leads to regioselective formation of the ortho-substituted product. The resulting triphenylmethylium salt can be isolated when the Michlers ketone is used. More electrophilic cations form cyclic enol ethers such as 1-n-butyl-9,9-diaryl-1,9-dihydro-10-oxa-1,3-diazaphenanthrene-2,4-diones. Alternatively, supramolecular complex formation with 2,6-diacetamido pyridine as well as carbenium ion generation have been studied. Although in dilute acid only protonation of one of the carbonyl oxygens occurs, ring opening of the cyclic enol ether toward the carbenium ion is observed in 96% sulfuric acid.

16.
J Org Chem ; 70(21): 8564-7, 2005 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-16209609

RESUMEN

Chiral nitroanilines containing 1,2- or 1,3-diol functionalities have been synthesized by nucleophilic aromatic substitution of fluoronitroanilines with 1-aminopropane-2,3-diols and 2-aminopropane-1,3-diol in the melt. X-ray structure analyses confirm retention of the configuration of the chiral center. The novel chromophores are suitable to link reversibly to various substituted arylboronic acids which allows the construction of new solvatochromic sensor molecules suitable to response to solvent and anion coordination by fluoride. The solvatochromism of the new compounds has been studied using the Kamlet-Taft LSE relationship.

17.
Dalton Trans ; (12): 1873-81, 2004 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-15381995

RESUMEN

A series of unsymmetrical 1,2-bis(phosphino)ethanes R(2)PCH(2)CH(2)PR'(2) and 1-arsino-2-phosphinoethanes R(2)AsCH(2)CH(2)PR'(2) mainly with bulky substituents R and R' were prepared from the cyclic sulfate by stepwise cleavage of the carbon-oxygen bonds by LiPR(2) and LiPR'(2) or LiAsR(2) and LiPR'(2), respectively. Analogously, racemic mixtures of R(2)PCH(2)CH(Me)PPh(2)(R =iPr, Cy ) as well as the enantiomers (R)-, (R)- and (R)-tBu(2)PCH(2)CH(Me)PPh(2)(R)- were obtained from the corresponding unsymmetrical cyclic sulfates and (S)-. On a similar route, the racemates of the 1,3-bis(phosphino)propanes R(2)PCH(2)CH(2)CH(Me)PPh(2)(R =iPr, tBu ), optically pure (R)- and (S,S)-iPr(2)PCH(Me)CH(2)CH(Me)PPh(2)(S,S)- were prepared. The reaction of [[RhCl([small eta](4)-C(8)H(12))](2)] with chelating ligands L-L, where L-L is R(2)PCH(2)P(men)(2)(R =iPr, Ph; men =(1S,2R,5S)-menthyl), Cy(2)AsCH(2)P(men)(2), or (R)-, (R)-, (R)-, (R)- and (S,S)-, in the presence of AgPF(6), gave the complexes [Rh(eta(4)-C(8)H(12))(L-L)]PF(6) which were used as pre-catalysts in the hydrogenation of the methyl ester of alpha-acetamidocinnamic acid (ACM). Depending on L-L, the solvent, the temperature and the pressure of H(2), optical yields of up to 69% ee were achieved. For two of the rhodium complexes, and, the molecular structures were determined by X-ray crystallography.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA