RESUMEN
For the broadest dissemination of solid-state dynamic nuclear polarization (ssDNP) enhanced NMR as a material characterization tool, the ability to employ generic mono-nitroxide radicals as spin probes is critical. A better understanding of the factors contributing to ssDNP efficiency is needed to rationally optimize the experimental condition for the practically accessible spin probes at hand. This study seeks to advance the mechanistic understanding of ssDNP by examining the effect of electron spin dynamics on ssDNP performance at liquid helium temperatures (4-40 K). The key observation is that bi-radicals and mono-radicals can generate comparable nuclear spin polarization at 4 K and 7 T, which is in contrast to the observation for ssDNP at liquid nitrogen temperatures (80-150 K) that finds bi-radicals to clearly outperform mono-radicals. To rationalize this observation, we analyze the change in the DNP-induced nuclear spin polarization (Pn) and the characteristic ssDNP signal buildup time as a function of electron spin relaxation rates that are modulated by the mono- and bi-radical spin concentration. Changes in Pn are consistent with a systematic variation in the product of the electron spin-lattice relaxation time and the electron spin flip-flop rate that constitutes an integral saturation factor of an inhomogeneously broadened EPR spectrum. We show that the comparable Pn achieved with both radical species can be reconciled with a comparable integral EPR saturation factor. Surprisingly, the largest Pn is observed at an intermediate spin concentration for both mono- and bi-radicals. At the highest radical concentration, the stronger inter-electron spin dipolar coupling favors ssDNP, while oversaturation diminishes Pn, as experimentally verified by the observation of a maximum Pn at an intermediate, not the maximum, microwave (µw) power. At the maximum µw power, oversaturation reduces the electron spin population differential that must be upheld between electron spins that span a frequency difference matching the (1)H NMR frequency-characteristic of the cross effect DNP. This new mechanistic insight allows us to rationalize experimental conditions where generic mono-nitroxide probes can offer competitive ssDNP performance to that of custom designed bi-radicals, and thus helps to vastly expand the application scope of ssDNP for the study of functional materials and solids.
Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , Óxidos de Nitrógeno/química , Óxidos N-Cíclicos/química , Electrones , Glicerol/química , Espectroscopía de Resonancia Magnética , Temperatura , Agua/químicaRESUMEN
In order to facilitate versatile applications with high field dynamic nuclear polarization (DNP), it is important to be able to optimize the DNP performance, i.e. reach high nuclear hyperpolarization within a short signal build up time. Given that the solid-state DNP process is strongly temperature-dependent, it is important to benchmark the temperature dependence of various DNP and electron paramagnetic resonance (EPR) parameters that can then be used to test and develop theories and models for high field DNP mechanisms. However, DNP and EPR experiments at high fields and cryogenic temperatures below 20 Kelvin usually require home built instrumentation, and therefore even basic experimental observations are lacking in the literature. DNP and EPR experiments at 7 T (197 GHz) and 8.5 T (240 GHz), respectively, were conducted at temperatures between 35 K and 3.7 K where the electron thermal polarization changes from 13.4% to 85.6%, respectively. The samples are frozen solutions of 15 mM OX063Me trityl radicals in various mixtures of [1-(13)C]pyruvic acid, glycerol, and Gd(3+)-chelates. For all sample mixtures, the trityl EPR lines are found to be inhomogeneously broadened and the dominant DNP mechanism is shown to be the cross effect (CE). A 20%, 11%, and 6.77% (13)C polarization is achieved at 3.7 K with a [1-(13)C]pyruvic-glycerol-H2O sample, the addition of 2 mM of Gd(3+)-chelates, and pure [1-(13)C]pyruvic acid, respectively. When T1n is sufficiently long, our results seem to suggest T1e is a key variable in the DNP process, where longer T1e values correlate with larger DNP enhancements (εDNP). The experimental data reported here on the temperature dependence of T1n, T1e, Tm (electron phase memory time), the EPR linewidth, TDNP and ε(DNP) at high fields will be helpful for testing the mechanism and theory of DNP processes.
RESUMEN
IA3 is a 68 amino acid natural peptide/protein inhibitor of yeast aspartic proteinase A (YPRA) that is intrinsically disordered in solution with induced N-terminal helicity when in the protein complex with YPRA. Based on the intrinsically disordered protein (IDP) parameters of fractional net charge (FNC), net charge density per residue (NCPR), and charge patterning (κ), the two domains of IA3 are defined to occupy different domains within conformationally based subclasses of IDPs, thus making IA3 a bimodal domain IDP. Site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy and low-field Overhauser dynamic nuclear polarization (ODNP) spectroscopy results show that these two domains possess different degrees of compaction and hydration diffusivity behavior. This work suggests that SDSL EPR line shapes, analyzed in terms of their local tumbling volume (VL), provide insights into the compaction of the unstructured IDP ensemble in solution and that protein sequence and net charge distribution patterns within a conformational subclass can impact bound water hydration dynamics, thus possibly offering an alternative thermodynamic property that can encode conformational binding and behavior of IDPs and liquid-liquid phase separations.
Asunto(s)
Proteínas Intrínsecamente Desordenadas , Saccharomyces cerevisiae , Espectroscopía de Resonancia por Spin del Electrón/métodos , Conformación Proteica , Marcadores de Spin , Secuencia de Aminoácidos , Proteínas Intrínsecamente Desordenadas/químicaRESUMEN
We present our experimental setup for both dynamic nuclear polarization (DNP) and electron paramagnetic resonance (EPR) detection at 7 T using a quasi-optical bridge for propagation of the 200 GHz beam and our initial results obtained at 4 K. Our quasi-optical bridge allows the polarization of the microwave beam to be changed from linear to circular. Only the handedness of circular polarization in the direction of the Larmor precession is absorbed by the electron spins, so a gain in effective microwave power of two is expected for circular vs. linear polarization. Our results show an increase in DNP signal enhancement of 28% when using circularly vs. linearly polarized radiation. We measured a maximum signal enhancement of 65 times that of thermal polarization for a (13)C labeled urea sample corresponding to 3% nuclear spin polarization. Since the time constant for nuclear spin polarization buildup during microwave irradiation is 10 times faster than the (13)C nuclear spin T(1), the actual gain in detection sensitivity with DNP is much greater.
Asunto(s)
Espectroscopía de Resonancia Magnética/instrumentación , Isótopos de Carbono/química , Espectroscopía de Resonancia Magnética/métodos , MicroondasRESUMEN
We have performed dynamic nuclear polarization (DNP) experiments at liquid helium temperatures using a low-power (<70 mW) solid-state diode microwave source at 200 GHz-the electron paramagnetic resonance frequency of stable radicals at 7 T. We employed a home-built Alderman-Grant probe for the detection of ¹H NMR signal at 300 MHz, as such coils are well suited for higher frequency NMR detection. The Alderman-Grant coil is inductively coupled to the rest of the radiofrequency (rf) circuit, whose design allows probe components to be placed away from the sample area, and also enables easy switching of coils with different diameters and resonance frequencies. We have tested our DNP instrument on a frozen nitroxide model system consisting of 4-Amino TEMPO dissolved in a glycerol:water mixture. The largest nuclear spin polarization observed was 61 ± 2% with a sample containing 20 mM 4-Amino TEMPO dissolved in deuterated glycerol (d-glycerol):D2O:H2O (50:40:10), amounting to record polarization measured to date at an easily amenable temperature of 4 K.