Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Circulation ; 146(23): 1758-1778, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36259389

RESUMEN

BACKGROUND: Phosphodiesterase 3A (PDE3A) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart, PDE3A mutations could be protective. METHODS: We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying PDE3A mutations were established, differentiated to cardiomyocytes, and analyzed by Ca2+ imaging. We used Förster resonance energy transfer and biochemical assays. RESULTS: We identified a new PDE3A mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB PDE3A mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The ß-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the PDE3A mutations caused adaptive changes of Ca2+ cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding. CONCLUSIONS: Although in vascular smooth muscle, PDE3A mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of PDE3A mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertension-induced cardiac damage.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Células Madre Pluripotentes Inducidas , Humanos , Ratas , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Microtomografía por Rayos X , Células Madre Pluripotentes Inducidas/metabolismo , Hipertensión/complicaciones , Hipertensión/genética , Miocitos Cardíacos/metabolismo , Cardiomegalia , ARN
2.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35054947

RESUMEN

The cAMP-dependent aquaporin-2 (AQP2) redistribution from intracellular vesicles into the plasma membrane of renal collecting duct principal cells induces water reabsorption and fine-tunes body water homeostasis. However, the mechanisms controlling the localization of AQP2 are not understood in detail. Using immortalized mouse medullary collecting duct (MCD4) and primary rat inner medullary collecting duct (IMCD) cells as model systems, we here discovered a key regulatory role of Aurora kinase A (AURKA) in the control of AQP2. The AURKA-selective inhibitor Aurora-A inhibitor I and novel derivatives as well as a structurally different inhibitor, Alisertib, prevented the cAMP-induced redistribution of AQP2. Aurora-A inhibitor I led to a depolymerization of actin stress fibers, which serve as tracks for the translocation of AQP2-bearing vesicles to the plasma membrane. The phosphorylation of cofilin-1 (CFL1) inactivates the actin-depolymerizing function of CFL1. Aurora-A inhibitor I decreased the CFL1 phosphorylation, accounting for the removal of the actin stress fibers and the inhibition of the redistribution of AQP2. Surprisingly, Alisertib caused an increase in actin stress fibers and did not affect CFL1 phosphorylation, indicating that AURKA exerts its control over AQP2 through different mechanisms. An involvement of AURKA and CFL1 in the control of the localization of AQP2 was hitherto unknown.


Asunto(s)
Acuaporina 2/metabolismo , Aurora Quinasa A/metabolismo , Túbulos Renales Colectores/metabolismo , Actinas/metabolismo , Animales , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/genética , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , AMP Cíclico/metabolismo , Silenciador del Gen , Inmunohistoquímica , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/efectos de los fármacos , Masculino , Estructura Molecular , Fosforilación , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas/efectos de los fármacos , Ratas
3.
Proc Natl Acad Sci U S A ; 114(39): 10414-10419, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28893983

RESUMEN

Protein phosphorylation by cyclic AMP-dependent protein kinase (PKA) underlies key cellular processes, including sympathetic stimulation of heart cells, and potentiation of synaptic strength in neurons. Unrestrained PKA activity is pathological, and an enduring challenge is to understand how the activity of PKA catalytic subunits is directed in cells. We developed a light-activated cross-linking approach to monitor PKA subunit interactions with temporal precision in living cells. This enabled us to refute the recently proposed theory that PKA catalytic subunits remain tethered to regulatory subunits during cAMP elevation. Instead, we have identified other features of PKA signaling for reducing catalytic subunit diffusion and increasing recapture rate. Comprehensive quantitative immunoblotting of protein extracts from human embryonic kidney cells and rat organs reveals that regulatory subunits are always in large molar excess of catalytic subunits (average ∼17-fold). In the majority of organs tested, type II regulatory (RII) subunits were found to be the predominant PKA subunit. We also examined the architecture of PKA complexes containing RII subunits using cross-linking coupled to mass spectrometry. Quantitative comparison of cross-linking within a complex of RIIß and Cß, with or without the prototypical anchoring protein AKAP18α, revealed that the dimerization and docking domain of RIIß is between its second cAMP binding domains. This architecture is compatible with anchored RII subunits directing the myristylated N terminus of catalytic subunits toward the membrane for release and recapture within the plane of the membrane.


Asunto(s)
Dominio Catalítico/fisiología , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/química , Miocitos Cardíacos/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Línea Celular , AMP Cíclico/química , Células HEK293 , Humanos , Masculino , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Miocardio/metabolismo , Fosforilación/fisiología , Unión Proteica , Estructura Secundaria de Proteína , Ratas , Ratas Sprague-Dawley
4.
J Biol Chem ; 287(40): 33554-66, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22869375

RESUMEN

The accessory α(2)δ subunits of voltage-gated calcium channels are membrane-anchored proteins, which are highly glycosylated, possess multiple disulfide bonds, and are post-translationally cleaved into α(2) and δ. All α(2)δ subunits have a C-terminal hydrophobic, potentially trans-membrane domain and were described as type I transmembrane proteins, but we found evidence that they can be glycosylphosphatidylinositol-anchored. To probe further the function of membrane anchoring in α(2)δ subunits, we have now examined the properties of α(2)δ-1 constructs truncated at their putative glycosylphosphatidylinositol anchor site, located before the C-terminal hydrophobic domain (α(2)δ-1ΔC-term). We find that the majority of α(2)δ-1ΔC-term is soluble and secreted into the medium, but unexpectedly, some of the protein remains associated with detergent-resistant membranes, also termed lipid rafts, and is extrinsically bound to the plasma membrane. Furthermore, heterologous co-expression of α(2)δ-1ΔC-term with Ca(V)2.1/ß1b results in a substantial enhancement of the calcium channel currents, albeit less than that produced by wild-type α(2)δ-1. These results call into question the role of membrane anchoring of α(2)δ subunits for calcium current enhancement.


Asunto(s)
Canales de Calcio Tipo N/química , Calcio/metabolismo , Animales , Membrana Celular/metabolismo , ADN Complementario/metabolismo , Electrofisiología/métodos , Ganglios Espinales/metabolismo , Concentración de Iones de Hidrógeno , Inmunohistoquímica/métodos , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Conejos , Ratas , Ratas Sprague-Dawley , Análisis de Secuencia de ADN
5.
Methods Mol Biol ; 2483: 117-139, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35286673

RESUMEN

A-kinase anchoring proteins (AKAPs) are a family of multivalent scaffolding proteins. They engage in direct protein-protein interactions with protein kinases, kinase substrates and further signaling molecules. Each AKAP interacts with a specific set of protein interaction partners and such sets can vary between different cellular compartments and cells. Thus, AKAPs can coordinate signal transduction processes spatially and temporally in defined cellular environments. AKAP-dependent protein-protein interactions are involved in a plethora of physiological processes, including processes in the cardiovascular, nervous, and immune system. Dysregulation of AKAPs and their interactions is associated with or causes widespread diseases, for example, cardiac diseases such as heart failure. However, there are profound shortcomings in understanding functions of specific AKAP-dependent protein-protein interactions. In part, this is due to the lack of agents for specifically targeting defined protein-protein interactions. Peptidic and non-peptidic inhibitors are invaluable molecular tools for elucidating the functions of AKAP-dependent protein-protein interactions. In addition, such interaction disruptors may pave the way to new concepts for the treatment of diseases where AKAP-dependent protein-protein interactions constitute potential drug targets.Here we describe screening approaches for the identification of small molecule disruptors of AKAP-dependent protein-protein interactions. Examples include interactions of AKAP18 and protein kinase A (PKA) and of AKAP-Lbc and RhoA. We discuss a homogenous time-resolved fluorescence (HTRF) and an AlphaScreen® assay for small molecule library screening and human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) as a cell system for the characterization of identified hits.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Células Madre Pluripotentes Inducidas , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Unión Proteica , Transducción de Señal
6.
Nat Commun ; 9(1): 4441, 2018 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-30361475

RESUMEN

Deregulation of the ubiquitin ligase E6AP is causally linked to the development of human disease, including cervical cancer. In complex with the E6 oncoprotein of human papillomaviruses, E6AP targets the tumor suppressor p53 for degradation, thereby contributing to carcinogenesis. Moreover, E6 acts as a potent activator of E6AP by a yet unknown mechanism. However, structural information explaining how the E6AP-E6-p53 enzyme-substrate complex is assembled, and how E6 stimulates E6AP, is largely missing. Here, we develop and apply different crosslinking mass spectrometry-based approaches to study the E6AP-E6-p53 interplay. We show that binding of E6 induces conformational rearrangements in E6AP, thereby positioning E6 and p53 in the immediate vicinity of the catalytic center of E6AP. Our data provide structural and functional insights into the dynamics of the full-length E6AP-E6-p53 enzyme-substrate complex, demonstrating how E6 can stimulate the ubiquitin ligase activity of E6AP while facilitating ubiquitin transfer from E6AP onto p53.


Asunto(s)
Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Sitios de Unión , Humanos , Espectrometría de Masas , Modelos Biológicos , Unión Proteica , Dominios Proteicos , Especificidad por Sustrato , Ubiquitinación
8.
Methods Mol Biol ; 1294: 167-80, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25783885

RESUMEN

cAMP-dependent protein kinase (PKA) is tethered at different subcellular locations by A-kinase anchoring proteins (AKAPs). AKAPs present amphipathic helices that bind to the docking and dimerization (D/D) domain of PKA regulatory subunits. Peptide disruptors derived from AKAP anchoring helices are powerful tools for determining whether PKA anchoring is important in different biological processes. Focusing on the reciprocal side of the AKAP-PKA interface can enable development of tools for determining the roles of individual AKAPs. Accordingly, here we describe a bacteriophage screening procedure for identifying variants of PKA regulatory subunit D/D domains that bind selectively to individual AKAPs. This procedure can be adapted for engineering specificity into other shared protein interfaces.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/química , Bacteriófago T7/genética , Proteínas Quinasas Dependientes de AMP Cíclico/química , Péptidos/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Bacteriófago T7/metabolismo , Sitios de Unión , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Simulación del Acoplamiento Molecular , Péptidos/genética , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA